下载此文档

2024年高考数学一轮复习(人教版) 第2章 §2.3 函数的奇偶性、周期性.docx


高中 高二 下学期 数学 人教版

1340阅读234下载13页191 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第2章 §2.3 函数的奇偶性、周期性.docx
文档介绍:
§2.3 函数的奇偶性、周期性
考试要求 1.了解函数奇偶性的含义,了解函数的周期性及其几何意义.2.会依据函数的性质进行简单的应用.
知识梳理
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
一般地,设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=f(x),那么函数f(x)就叫做偶函数
关于y轴对称
奇函数
一般地,设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=-f(x),那么函数f(x)就叫做奇函数
关于原点对称
2.周期性
(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T叫做这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
常用结论
1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.
2.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=,则T=2a(a>0).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若函数f(x)为奇函数,则f(0)=0.( × )
(2)不存在既是奇函数,又是偶函数的函数.( × )
(3)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( × )
(4)若T是函数f(x)的一个周期,则kT(k∈N*)也是函数的一个周期.( √ )
教材改编题
1.若偶函数f(x)在区间[-2,-1]上单调递减,则函数f(x)在区间[1,2]上(  )
A.单调递增,且有最小值f(1)
B.单调递增,且有最大值f(1)
C.单调递减,且有最小值f(2)
D.单调递减,且有最大值f(2)
答案 A
解析 偶函数f(x)在区间[-2,-1]上单调递减,
则由偶函数的图象关于y轴对称,则有f(x)在[1,2]上单调递增,
即有最小值为f(1),最大值为f(2).
对照选项,A正确.
2.已知函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,则f(-2)=________.
答案 -6
解析 因为函数y=f(x)是奇函数,且当x>0时,有f(x)=x+2x,
所以f(-2)=-f(2)=-(2+4)=-6.
3.已知函数f(x)是定义在R上的周期为4的奇函数,若f(1)=1,则f(2 023)=________.
答案 -1
解析 因为函数f(x)是定义在R上的周期为4的奇函数,
所以f(2 023)=f(506×4-1)=f(-1)=-f(1)=-1.
题型一 函数奇偶性的判断
例1 (多选)下列命题中正确的是(  )
A.奇函数的图象一定过坐标原点
B.函数y=xsin x是偶函数
C.函数y=|x+1|-|x-1|是奇函数
D.函数y=是奇函数
答案 BC
解析 对于A,只有奇函数在x=0处有定义时,函数的图象过原点,所以A不正确;
对于B,因为函数y=xsin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),
所以该函数为偶函数,所以B正确;
对于C,函数y=|x+1|-|x-1|的定义域为R关于原点对称,
且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),
所以函数为奇函数,所以C正确;
对于D,函数y=满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,
所以该函数为非奇非偶函数,所以D不正确.
思维升华 判断函数的奇偶性,其中包括两个必备条件
(1)定义域关于原点对称,否则即为非奇非偶函数.
(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.
跟踪训练1 已知函数f(x)=sin x,g(x)=ex+e-x,则下列结论正确的是(  )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
答案 C
解析 选项A,f(x)g(x)=(ex+e-x)sin x,
f(-x)g(-x)=(e-x+ex)sin(-x)=-(ex+e-x)sin x=-f(x)g(x),是奇函数,判断错
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档