下载此文档

人教版高中数学1 第1讲 1 第1讲 变化率与导数、导数的计算新题培优练.doc


高中 高三 下学期 数学 人教版

1340阅读234下载6页174 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学1 第1讲 1 第1讲 变化率与导数、导数的计算新题培优练.doc
文档介绍:
[基础题组练]
1.已知函数f(x)=cos x,则f(π)+f′=(  )
A.- B.-
C.- D.-
解析:选C.因为f′(x)=-cos x+(-sin x),所以f(π)+f′=-+·(-1)=-.
2.(2019·福州模拟)曲线f(x)=x+ln x在点(1,1)处的切线与坐标轴围成的三角形的面积为(  )
A.2 B.
C. D.
解析:选D.f′(x)=1+,则f′(1)=2,故曲线f(x)=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1,此切线与两坐标轴的交点坐标分别为(0,-1),,则切线与坐标轴围成的三角形的面积为×1×=,故选D.
3.已知曲线y=-3ln x的一条切线的斜率为,则切点的横坐标为(  )
A.3 B.2
C.1 D.
解析:选A.因为y′=-,令y′=,解得x=3,即切点的横坐标为3.
4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是(  )
解析:选D.由y=f′(x)的图象知y=f′(x)在(0,+∞)上单调递减,说明函数y=f(x)的切线的斜率在(0,+∞)上也单调递减,故排除A、C.又由图象知y=f′(x)与y=g′(x)的图象在x=x0处相交,说明y=f(x)与y=g(x)的图象在x=x0处的切线的斜率相同,故排除B.
5.函数g(x)=x3+x2+3ln x+b(b∈R)在x=1处的切线过点(0,-5),则b的值为(  )
A. B.
C. D.
解析:选B.当x=1时,g(1)=1++b=+b,
又g′(x)=3x2+5x+,
所以切线斜率k=g′(1)=3+5+3=11,
从而切线方程为y=11x-5,
由于点在切线上,所以+b=11-5,
解得b=.故选B.
6.已知f(x)=ax4+bcos x+7x-2.若f′(2 018)=6,则f′(-2 018)=________.
解析:因为f′(x)=4ax3-bsin x+7,
所以f′(-x)=4a(-x)3-bsin(-x)+7
=-4ax3+bsin x+7.
所以f′(x)+f′(-x)=14.
又f′(2 018)=6,
所以f′(-2 018)=14-6=8.
答案:8
7.(2019·广州市调研测试)若过点A(a,0)作曲线C:y=xex的切线有且仅有两条,则实数a的取值范围是________.
解析:设切点坐标为(x0,x0ex0),y′=(x+1)ex,y′|x=x0=(x0+1)ex0,所以切线方程为y-x0ex0=(x0+1)ex0(x-x0),将点A(a,0)代入可得-x0ex0=(x0+1)ex0(a-x0),化简,得x-ax0-a=0,过点A(a,0)作曲线C的切线有且仅有两条,即方程x-ax0-a=0有两个不同的解,则有Δ=a2+4a>0,解得a>0或a<-4,故实数a的取值范围是(-∞,-4)∪(0,+∞).
答案:(-∞,-4)∪(0,+∞)
8.(2019·南昌第一次模拟)设函数f(x)在(0,+∞)内可导,其导函数为f′(x),且f(ln x)=x+ln x,则f′(1)=________.
解析:
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档