下载此文档

人教版高中数学2 第2讲 不等式证明 新题培优练.doc


高中 高三 下学期 数学 人教版

1340阅读234下载5页120 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学2 第2讲 不等式证明 新题培优练.doc
文档介绍:
[基础题组练]
1.已知实数a,b,c满足a>0,b>0,c>0,且abc=1.
(1)证明:(1+a)(1+b)(1+c)≥8;
(2)证明:++≤++.
证明:(1)1+a≥2,1+b≥2,1+c≥2,
相乘得:(1+a)(1+b)(1+c)≥8=8.
(2)++=ab+bc+ac,
ab+bc≥2=2,
ab+ac≥2=2,
bc+ac≥2=2,
相加得++≤++.
2.求证:+++…+<2.
证明:因为<=-,(n>1)
所以+++…+<1++++…+=1+++…+=2-<2.
3.(2019·长春市质量检测(一))设不等式||x+1|-|x-1||<2的解集为A.
(1)求集合A;
(2)若a,b,c∈A,求证:>1.
解:(1)由已知,令f(x)=|x+1|-|x-1|

由|f(x)|<2得-1<x<1,即A={x|-1<x<1}.
(2)证明:要证>1,只需证|1-abc|>|ab-c|,
只需证1+a2b2c2>a2b2+c2,
只需证1-a2b2>c2(1-a2b2),
只需证(1-a2b2)(1-c2)>0,
由a,b,c∈A,得-1<ab<1,c2<1,
所以(1-a2b2)(1-c2)>0恒成立.
综上,>1.
4.已知函数f(x)=ax2+bx+c(a,b,c∈R),当x∈[-1,1]时,|f(x)|≤1.
(1)求证:|b|≤1;
(2)若f(0)=-1,f(1)=1,求实数a的值.
解:(1)证明:由题意知f(1)=a+b+c,f(-1)=a-b+c,
所以b=[f(1)-f(-1)].
因为当x∈[-1,1]时,|f(x)|≤1,
所以|f(1)|≤1,|f(-1)|≤1,
所以|b|=|f(1)-f(-1)|≤[|f(1)|+|f(-1)|]≤1.
(2)由f(0)=-1,f(1)=1可得c=-1,b=2-a,
所以f(x)=ax2+(2-a)x-1.
当a=0时,不满足题意,当a≠0时,
函数f(x)图象的对称轴为x=,即x=-.
因为x∈[-1,1]时,|f(x)|≤1,
即|f(-1)|≤1,所以|2a-3|≤1,解得1≤a≤2.
所以-≤-≤0,故|f|=
|a+(2-a)-1|≤1.
整理得|+1|≤1,
所以-1≤+1≤1,
所以-2≤≤0,
又a>0,所以≥0,
所以=0,所以a=2.
[综合题组练]
1.已知函数f(x)=|x-2|.
(1)解不等式:f(x)+f(x+1)≤2;
(2)若a<0,求证:f(ax)-af(x)≥f(2a).
解:(1)由题意,得f(x)+f(x+1)=|x-1|+|x-2|.
因此只要解不等式|x-1|+|x-2|≤2.
当x≤1时,原不等式等价于-2x+3≤2,即≤x≤1;
当1<x≤2时,原不等式等价于1≤2,即1<x≤2;
当x>2时,原不等式等价于2x-3≤2,即2<x≤.
综上,原不等式的解集为.
(2)证明:由题意得f(ax)-af(x)=|ax-2|-a|x-2|=|ax-2|+|2a-ax|≥|ax-2+2a-ax|=|2a-2|=f(2a),
所以f(ax)-af(x)≥f(2a)成立.
2.已知函数f(x
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档