下载此文档

人教版高中数学第5讲 指数与指数函数0.doc


高中 高三 下学期 数学 人教版

1340阅读234下载6页559 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5讲 指数与指数函数0.doc
文档介绍:
第5讲 指数与指数函数
一、选择题
1.(2017·衡水中学模拟)若a=,b=x2,c=logx,则当x>1时,a,b,c的大小关系是(  )
A.c<a<b B.c<b<a
C.a<b<c D.a<c<b
解析 当x>1时,0<a=x<,b=x2>1,c=logx<0,所以c<a<b.
答案 A
2.函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是(  )
A.a>1,b<0 B.a>1,b>0
C.0<a<1,b>0 D.0<a<1,b<0
解析 由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0<a<1.
函数f(x)=ax-b的图象是在f(x)=ax的基础上向左平移得到的,所以b<0.
答案 D
3.(2017·德州一模)已知a=,b=,c=,则(  )
A.a<b<c B.c<b<a
C.c<a<b D.b<c<a
解析 ∵y=在R上为减函数,>,∴b<c.
又∵y=x在(0,+∞)上为增函数,>,
∴a>c,∴b<c<a.
答案 D
4.(2017·安阳模拟)已知函数f(x)=ax(a>0,且a≠1),如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于(  )
A.1 B.a
C.2 D.a2
解析 ∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,
∴x1+x2=0.又∵f(x)=ax,
∴f(x1)·f(x2)=ax1·ax2=ax1+x2=a0=1.
答案 A
5.(2017·西安调研)若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是(  )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
解析 由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.
答案 B
二、填空题
6.×+8×-=________.
解析 原式=×1+2×2-=2.
答案 2
7.(2015·江苏卷)不等式2x2-x<4的解集为________.
解析 ∵2x2-x<4,∴2x2-x<22,
∴x2-x<2,即x2-x-2<0,解得-1<x<2.
答案 {x|-1<x<2}
8.(2017·安徽江淮十校联考)已知max(a,b)表示a,b两数中的最大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为________.
解析 f(x)=
当x≥1时,f(x)=ex≥e(x=1时,取等号),
当x<1时,f(x)=e|x-2|=e2-x>e,
因此x=1时,f(x)有最小值f(1)=e.
答案 e
三、解答题
9.已知f(x)=x3(a>0,且a≠1).
(1)讨论f(x)的奇偶性;
(2)求a的取值范围,使f(x)>0在定义域上恒成立.
解 (1)由于ax-1≠0,则ax≠1,得x≠0,
所以函数f(x)的定义域为{x|
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档