下载此文档

人教版高中数学第6讲 高效演练分层突破7.doc


高中 高三 下学期 数学 人教版

1340阅读234下载5页128 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第6讲 高效演练分层突破7.doc
文档介绍:
[基础题组练]
1.函数y=的定义域是(  )
A.[1,2] B.[1,2)
C. D.
解析:选C.由即
解得x≥.故选C.
2.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且f(2)=1,则f(x)=(  )
A.log2x B.
C.logx D.2x-2
解析:选A.由题意知f(x)=logax(a>0且a≠1),因为f(2)=1,所以loga2=1,所以a=2.所以f(x)=log2x.故选A.
3.设函数f(x)=loga|x|在(-∞,0)上单调递增,则f(a+1)与f(2)的大小关系是(  )
A.f(a+1)>f(2) B.f(a+1)<f(2)
C.f(a+1)=f(2) D.不能确定
解析:选A.由已知得0<a<1,所以1<a+1<2,又易知函数f(x)为偶函数,故可以判断f(x)在(0,+∞)上单调递减,所以f(a+1)>f(2).
4.(多选)在同一直角坐标系中,f(x)=kx+b与g(x)=logbx的图象如图,则下列关系不正确的是(  )
A.k<0,0<b<1
B.k>0,b>1
C.fg(1)>0(x>0)
D.x>1时,f(x)-g(x)>0
解析:选ABC.由直线方程可知,k>0,0<b<1,故A,B不正确;而g(1)=0,故C不正确;而当x>1时,g(x)<0,f(x)>0,所以f(x)-g(x)>0.所以D正确.
5.(多选)已知函数f(x)=ln(x-2)+ln(6-x),则(  )
A.f(x)在(2,6)上单调递增
B.f(x)在(2,6)上的最大值为2ln 2
C.f(x)在(2,6)上单调递减
D.y=f(x)的图象关于直线x=4对称
解析:选BD.f(x)=ln(x-2)+ln(6-x)=ln[(x-2)(6-x)],定义域为(2,6).令t=(x-2)(6-x),则y=ln t.因为二次函数t=(x-2)(6-x)的图象的对称轴为直线x=4,又f(x)的定义域为(2,6),所以f(x)的图象关于直线x=4对称,且在(2,4)上单调递增,在(4,6)上单调递减,当x=4时,t有最大值,所以f(x)max=ln(4-2)+ln(6-4)=2ln 2,故选BD.
6.已知函数f(x)=x3+alog3x,若f(2)=6,则f=________.
解析:由f(2)=8+alog32=6,解得a=-,所以f=+alog3=-alog32=+×log32=.
答案:
7.(2020·贵州教学质量测评改编)已知函数y=loga(x+3)-(a>0,a≠1)的图象恒过定点A,则点A的坐标为________;若点A也在函数f(x)=3x+b的图象上,则f(log32)=________.
解析:令x+3=1可得x=-2,此时y=loga1-=-,可知定点A的坐标为.点A也在函数f(x)=3x+b的图象上,故-=3-2+b,解得b=-1.所以f(x)=3x-1,则f(log32)=3log32-1=2-1=1.
答案: 1
8.(教材****题改编)若loga<1(a>0,且a≠1),则实数a的取值范围是________.
解析:当0<a<1时,loga<logaa=1,所以0<a<
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档