下载此文档

2022届高考数学一轮复习(人教版)第3章 高考专题突破一 第3课时 利用导数证明不等式.docx


高中 高三 下学期 数学 教科版

1340阅读234下载12页202 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022届高考数学一轮复习(人教版)第3章 高考专题突破一 第3课时 利用导数证明不等式.docx
文档介绍:
第3课时 利用导数证明不等式
题型一 将不等式转化为函数的最值问题
例1 (2021·赣州模拟)已知函数f(x)=1-,g(x)=+-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
(1)求a,b的值;
(2)证明:当x≥1时,f(x)+g(x)≥.
(1)解 因为f(x)=1-,x>0,
所以f′(x)=,f′(1)=-1.
因为g(x)=+-bx,所以g′(x)=---b.
因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
所以g(1)=1,且f′(1)·g′(1)=-1,
所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,
解得a=-1,b=-1.
(2)证明 由(1)知,g(x)=-++x,
则f(x)+g(x)≥⇔1---+x≥0.
令h(x)=1---+x(x≥1),
则h(1)=0,h′(x)=+++1=++1.
因为x≥1,所以h′(x)=++1>0,
所以h(x)在[1,+∞)上单调递增,
所以当x≥1时,h(x)≥h(1)=0,
即1---+x≥0,
所以当x≥1时,f(x)+g(x)≥.
思维升华 待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
跟踪训练1 (2021·武汉调研)已知函数f(x)=ln x+,a∈R.
(1)讨论函数f(x)的单调性;
(2)当a>0时,证明f(x)≥.
(1)解 f′(x)=-=(x>0).
当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
当a>0时,若x>a,则f′(x)>0,
函数f(x)在(a,+∞)上单调递增;
若0<x<a,则f′(x)<0,函数f(x)在(0,a)上单调递减.
(2)证明 由(1)知,当a>0时,f(x)min=f(a)=ln a+1.
要证f(x)≥,只需证ln a+1≥,
即证ln a+-1≥0.
令函数g(a)=ln a+-1,
则g′(a)=-=(a>0),
当0<a<1时,g′(a)<0;当a>1时,g′(a)>0,
所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以g(a)min=g(1)=0.
所以ln a+-1≥0恒成立,
所以f(x)≥.
题型二 将不等式转化为两个函数的
最值进行比较
例2 (2020·长沙模拟)已知函数f(x)=ex2-xln x.求证:当x>0时,f(x)<xex+.
证明 要证f(x)<xex+,只需证ex-ln x<ex+,即ex-ex<ln x+.令h(x)=ln x+(x>0),则h′(x)=,易知h(x)在上单调递减,在上单调递增,则h(x)min=h=0,所以ln x+
eq \f(1,ex)≥0.再令φ(x)=ex-ex,则φ′(x)=e-ex,易知φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x)max=φ(1)=0,所以ex-ex≤0.因为h(x)与φ(x)不同时为0,所以ex-ex<ln x+,故原不等式成立.
思维升华 (1)若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x与ex,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.
(2)在证明过程中,等价转化是关键,此处h(x)min=φ(x)max恒成立.从而φ(x)≤h(x)恒成立,但此处φ(x)与h(x)取到最值的条件不是同一个“x的值”,故φ(x)<h(x)恒成立.
跟踪训练2 已知f(x)=xln x.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)证明:对一切x∈(0,+∞),都有ln x>-成立.
(1)解 由f(x)=xln x,x>0,得f′(x)=ln x+1,令f′(x)=0,得x=.当x∈时,f′(x)<0,f(x)单调递减;当x∈时,f′(x)>0,f(x)单调递增.
①当0<t<<t+2,即0<t<时,f(x)min=f =-;
②当≤t<t+2,即t≥时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tln t.令f(x)的最小值为g(t),
所以g(t)=
(2)证明 问题等价于证明xln x>-(x∈(0,+∞)).由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-,当且仅当x=时取到.设m(x)=-(x∈(0,+∞)),则m′(x)=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档