下载此文档

2022届高考数学一轮复习(人教版)第4章 §4.5 函数y=Asin(ωx+φ)的图象及应用.docx


高中 高三 下学期 数学 教科版

1340阅读234下载19页1.04 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022届高考数学一轮复习(人教版)第4章 §4.5 函数y=Asin(ωx+φ)的图象及应用.docx
文档介绍:
§4.5 函数y=Asin(ωx+φ)的图象及应用
考试要求 1.结合具体实例,了解y=Asin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响.2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.
1.简谐运动的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x≥0
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
2.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个特征点
x
ωx+φ
0
π

y=Asin(ωx+φ)
0
A
0
-A
0
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的两种途径
微思考
1.如图所示为函数y=sin(ωx+φ)的部分图象.利用零点代入求φ时,ωx1+φ取哪些值?
提示 2kπ+π,k∈Z.
2.函数y=sin(ωx+φ)图象的对称轴是什么?对称中心是什么?
提示 对称轴是直线x=+-(k∈Z),
对称中心是点(k∈Z).
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)把y=sin x的图象上各点的横坐标缩短为原来的,纵坐标不变,所得图象对应的函数解析式为y=sin x.( × )
(2)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( √ )
(3)函数f(x)=Asin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )
(4)如果y=Acos(ωx+φ)的最小正周期为T,那么函数图象的相邻两个对称中心之间的距离为.( √ )
题组二 教材改编
2.函数y=2sin的振幅、频率和初相分别为(  )
A.2,4π, B.2,,
C.2,,- D.2,4π,-
答案 C
解析 由题意知A=2,f===,初相为-.
3.函数y=sin x的图象上所有点的纵坐标不变,横坐标伸长为原来的2倍得到的图象对应的函数解析式是________.
答案 y=sin x
解析 根据函数图象变换法则可得.
4.如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,0<φ<π,则这段曲线的函数解析式为__________________________.
答案 y=10sin+20,x∈[6,14]
解析 从题图中可以看出,从6~14时的图象是函数y=Asin(ωx+φ)+b的半个周期,
所以A=×(30-10)=10,b=×(30+10)=20,
又×=14-6,所以ω=.
又×10+φ=2kπ,k∈Z,0<φ<π,所以φ=,
所以y=10sin+20,x∈[6,14].
题组三 易错自纠
5.y=cos(x+1)图象上相邻的最高点和最低点之间的距离是________.
答案 
解析 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为.
6.将曲线C1:y=2cos上的点向右平移个单位长度,再将各点横坐标缩短为原来的,纵坐标不变,得到曲线C2,则C2的方程为(  )
A.y=2sin 4x B.y=2sin
C.y=2sin x D.y=2sin
答案 A
解析 将曲线C1:y=2cos上的点向右平移个单位长度,可得y=2sin 2x的图象,再将各点横坐标缩短为原来的,纵坐标不变,可得曲线C2:y=2sin 4x,故选A.
题型一 函数y=Asin(ωx+φ)的图象及变换
例1 (1)(2020·天津)已知函数f(x)=sin.给出下列结论:
①f(x)的最小正周期为2π;
②f 是f(x)的最大值;
③把函数y=sin x的图象上所有点向左平移个单位长度,可得到函数y=f(x)的图象.
其中所有正确结论的序号是(  )
A.① B.①③ C.②③ D.①②③
答案 B
解析 T==2π,故①正确.
当x+=+2kπ(k∈Z),
即x=+2kπ(k∈Z)时,f(x)取得最大值,故②错误.
y=sin x的图象y=sin的图象,故③正确.
(2)(2020·江苏)将函数y=3sin的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是________.
答案 x=-
解析 将函数y=3sin的图象向右平移个单位长度,
所得图象的函数解析式为y=3sin=3sin.
令2x-=kπ+,k∈Z,
得对称轴的方程为x=+,k∈
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档