下载此文档

2022届高考数学一轮复习(人教版)第7章 §7.5 空间向量及其应用.docx


高中 高三 下学期 数学 教科版

1340阅读234下载21页797 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022届高考数学一轮复习(人教版)第7章 §7.5 空间向量及其应用.docx
文档介绍:
§7.5 空间向量及其应用
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a与b(b≠0)共线的充要条件是存在唯一的实数λ,使得a=λb.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在唯一的有序实数组{x,y,z},使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a,b的夹角,记作〈
a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①(λa)·b=λ(a·b).
②交换律:a·b=b·a.
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0
(a≠0,b≠0)
a1b1+a2b2+a3b3=0

|a|
夹角余弦值
cos〈a,b〉=(a≠0,b≠0)
cos〈a,b〉=
5.空间位置关系的向量表示
(1)直线的方向向量
直线的方向向量是指和这条直线平行(或在这条直线上)的有向线段所表示的向量,一条直线的方向向量有无数个.
(2)平面的法向量
直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.
(3)
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m⇔n·m=0
l⊥α
n∥m⇔n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m⇔n=λm
α⊥β
n⊥m⇔n·m=0
微思考
1.基向量和基底一样吗?0是否能作为基向量?
提示 不一样.基底是指一个向量组,基向量是基底中的某一个向量;因为0与其他两个非零向量共面,所以0不能作为基向量.
2.用向量法证明空间的线、面垂直关系的关键是什么?
提示 需要确定直线的方向向量和平面的法向量,然后把证明线、面的垂直关系转化为向量间的关系.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于非零向量b,若a·b=b·c,则a=c.( × )
(2)在空间直角坐标系中,在Oyz平面上的点的坐标一定是(0,b,c).( √ )
(3)若两条直线平行,则它们的方向向量的方向相同或相反.( √ )
(4)任何三个不共线的向量都可构成空间向量的一个基底.( × )
题组二 教材改编
2.若{a,b,c}为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是(  )
A.{a,a+b,a-b}
B.{b,a+b,a-b}
C.{c,a+b,a-b}
D.{a+b,a-b,a+2b}
答案 C
解析 对于A,因为(a+b)+(a-b)=2a,所以a,a+b,a-b共面,不能构成基底,排除A;对于B,因为(a+b)-(a-b)=2b,所以b,a+b,a-b共面,不能构成基
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档