下载此文档

2022届高考数学一轮复习(人教版)第8章 §8.5 第1课时 椭圆及其性质.docx


高中 高三 下学期 数学 教科版

1340阅读234下载18页630 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022届高考数学一轮复习(人教版)第8章 §8.5 第1课时 椭圆及其性质.docx
文档介绍:
§8.5 椭 圆
考试要求 1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质.
1.椭圆的定义
(1)定义:平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹.
(2)焦点:两个定点F1,F2.
(3)焦距:两焦点间的距离|F1F2|;半焦距:焦距的一半.
2.椭圆的简单几何性质
焦点的位置
焦点在x轴上
焦点在y轴上
图形
标准方程
+=1 (a>b>0)
+=1 (a>b>0)
范围
-a≤x≤a且-b≤y≤b
-b≤x≤b且-a≤y≤a
顶点
A1(-a,0),A2(a,0)
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a)
B1(-b,0),B2(b,0)
轴长
短轴长为2b,长轴长为2a
焦点
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦距
|F1F2|=2c
对称性
对称轴:x轴和y轴,对称中心:原点
离心率
e=(0<e<1)
a,b,c的关系
a2=b2+c2
微思考
1.在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点P的轨迹如何?
提示 当2a=|F1F2|时,动点P的轨迹是线段F1F2;当2a<|F1F2|时动点P的轨迹是不存在的.
2.椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?
提示 由e==知,当a不变时,e越大,b越小,椭圆越扁平;e越小,b越大,椭圆越接近于圆.
3.焦点弦的弦长最短是什么?
提示 焦点弦中通径(垂直于轴的焦点弦)最短,弦长为.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( × )
(2)椭圆是轴对称图形,也是中心对称图形.( √ )
(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( √ )
(4)+=1(a>b>0)与+=1(a>b>0)的焦距相等.( √ )
题组二 教材改编
2.已知F1(-3,0),F2(3,0),若点P到F1,F2的距离之和为10,则P点的轨迹方程是
____________.
答案 +=1
解析 因为|PF1|+|PF2|=10>|F1F2|=6,所以点P的轨迹是以F1,F2为焦点的椭圆,其中a=5,c=3,b==4,故点P的轨迹方程为+=1.
3.若椭圆+=1的焦距为4,则m=________.
答案 4或8
解析 当焦点在x轴上时,10-m>m-2>0,
10-m-(m-2)=4,∴m=4.
当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.
4.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为________.
答案 +=1
解析 如图,设椭圆方程为+=1(a>b>0),
由椭圆的定义可知,|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,又△ABF2的周长为16,
所以|AF1|+|AF2|+|BF1|+|BF2|=16,
即4a=16,a=4,又e==,
则c=2,b==2,
故椭圆C的方程为+=1.
5.已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为__________________.
答案 或
解析 设P(x,y),由题意知c2=a2-b2=5-4=1,
所以c=1,则F1(-1,0),F2(1,0).
由题意可得点P到x轴的距离为1,
所以y=±1,把y=±1代入+=1,
得x=±,又x>0,所以x=,
所以点P的坐标为或.
题组三 易错自纠
6.若方程+=1表示椭圆,则m满足的条件是____________________.
答案 
解析 由方程+=1表示椭圆,
知解得m>且m≠1.
7.已知椭圆+=1(m>0)的离心率e=,则m的值为________.
答案 3或
解析 若a2=5,b2=m,则c=,
由=,即=,解得m=3.
若a2=m,b2=5,
则c=.
由=,即=,
解得m=.
综上,m=3或.
8.已知点A(-2,0),B(0,1)在椭圆C:+=1(a>b>0)上,则椭圆C的方程为________;若直线y=x
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档