下载此文档

2024年高考数学一轮复习(人教版) 第3章 §3.3 导数与函数的极值、最值.docx


高中 高三 下学期 数学 教科版

1340阅读234下载16页266 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第3章 §3.3 导数与函数的极值、最值.docx
文档介绍:
§3.3 导数与函数的极值、最值
考试要求 1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.
知识梳理
1.函数的极值
(1)函数的极小值
函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
(2)函数的极大值
函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.
2.函数的最大(小)值
(1)函数f(x)在区间[a,b]上有最值的条件:
如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.
(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:
①求函数y=f(x)在区间(a,b)内的极值;
②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
常用结论
对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数的极值可能不止一个,也可能没有.( √ )
(2)函数的极小值一定小于函数的极大值.( × )
(3)函数的极小值一定是函数的最小值.( × )
(4)函数的极大值一定不是函数的最小值.( √ )
教材改编题
1.如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为(  )
A.1 B.2 C.3 D.4
答案 A
解析 由题意知,只有在x=-1处,f′(-1)=0,且其两侧导数符号为左负右正,故f(x)的极小值点只有1个.
2.函数f(x)=x3-ax2+2x-1有极值,则实数a的取值范围是________________.
答案 (-∞,-)∪(,+∞)
解析 f′(x)=3x2-2ax+2,由题意知f′(x)有变号零点,∴Δ=(-2a)2-4×3×2>0,
解得a>或a<-.
3.若函数f(x)=x3-4x+m在[0,3]上的最大值为4,则m=________.
答案 4
解析 f′(x)=x2-4,x∈[0,3],当x∈[0,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0,所以f(x)在[0,2)上单调递减,在(2,3]上单调递增.又f(0)=m,f(3)=-3+m,所以在[0,3]上,f(x)max=f(0)=4,所以m=4.
题型一 利用导数求解函数的极值问题
命题点1 根据函数图象判断极值
例1 (多选)(2023·华南师大附中模拟)如图是y=f(x)的导函数f′(x)的图象,对于下列四个判断,其中正确的判断是(  )
A.当x=-1时,f(x)取得极小值
B. f(x)在[-2,1]上单调递增
C.当x=2时,f(x)取得极大值
D. f(x)在[-1,2]上不具备单调性
答案 AC
解析 由导函数f′(x)的图象可知,
当-2<x<-1时,f′(x)<0,则f(x)单调递减;
当x=-1时,f′(x) =0;
当-1<x<2时,f′(x)>0,则f(x)单调递增;
当x=2时,f′(x)=0;
当2<x<4时,f′(x)<0,则f(x)单调递减;
当x=4时,f′(x)=0,
所以当x=-1时,f(x)取得极小值,故选项A正确;
f(x)在[-2,1]上有减有增,故选项B错误;
当x=2时,f(x)取得极大值,故选项C正确;
f(x)在[-1,2]上单调递增,故选项D错误.
命题点2 求已知函数的极值
例2 (2022·西南大学附中模拟)已知函数f(x)=ln x+2ax2+2(a+1)x(a≠0),讨论函数f(x)的极值.
解 因为f(x)=ln x+2ax2+2(a+1)x,所以f(x)的定义域为(0,+∞),f′(x)=+4ax+2a+2=,
若a<0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0,
故函数f(x)在上单调递增,在上单调递减;
故f(x)在x=-处取得唯一的极大值,且极大值为f =ln--1.
若a>0,则当x∈(0,+∞)时,f
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档