下载此文档

2024年高考数学一轮复习(人教版) 第7章 §7.6 空间向量的概念与运算.docx


高中 高三 下学期 数学 教科版

1340阅读234下载24页942 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第7章 §7.6 空间向量的概念与运算.docx
文档介绍:
§7.6 空间向量的概念与运算
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.
知识梳理
1.空间向量的有关概念
名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
长度相等而方向相反的向量
共线向量(或平行向量)
表示若干空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
2.空间向量的有关定理
(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积
非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
(2)空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0

|a|
夹角余弦值
cos〈a,b〉=(a≠0,b≠0)
cos〈a,b〉=
4.空间位置关系的向量表示
(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.
(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.
(3)空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2(λ∈R)
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α的法向量为m,l⊄α
l∥α
n⊥m⇔n·m=0
l⊥α
n∥m⇔n=λm(λ∈R)
平面α,β的法向量分别为n,m
α∥β
n∥m⇔n=λm(λ∈R)
α⊥β
n⊥m⇔n·m=0
常用结论
1.三点共线:在平面中A,B,C三点共线⇔=x+y(其中x+y=1),O为平面内任意一点.
2.四点共面:在空间中P,A,B,C四点共面⇔=x+y+z(其中x+y+z=1),O为空间中任意一点.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)空间中任意两个非零向量a,b共面.( √ )
(2)空间中模相等的两个向量方向相同或相反.( × )
(3)若A,B,C,D是空间中任意四点,则有+++=0.( √ )
(4)若直线a的方向向量和平面α的法向量平行,则a∥α.( × )
教材改编题
1. 如图,在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为点M,设=a,=b,
=c,则下列向量中与相等的向量是(  )
A.-a+b+c B.a+b+c
C.-a-b-c D.-a-b+c
答案 C
解析 =+=+(+)=++=-a-b-c.
2. 如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是(  )
A.相交 B.平行
C.垂直 D.不能确定
答案 B
解析 分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系.因为A1M=AN=,所以M,N,所以=,
又C1(0,0,0),D1(0,a,0),所以=(0,a,0),所以·=0,所以⊥.
因为是平面BB1C1C的一个法向量,且MN⊄平面BB1C1C,所以MN∥平面BB1C1C.
3.设直线l1,l2的方向向量分别为a=(-2,2,1),b=(3,-2,m),若l1⊥l2,则m=________.
答案 10
解析 ∵l1⊥l2,∴a⊥b,
∴a·b=-6-4+m=0,∴m=10.
题型一 空间向量的线性运算
例1 (1)在空间四边形ABCD中,=(-3,5,2),=(-
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档