下载此文档

2024年高考数学一轮复习(人教版) 第8章 §8.3 圆的方程.docx


高中 高三 下学期 数学 教科版

1340阅读234下载14页275 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第8章 §8.3 圆的方程.docx
文档介绍:
§8.3 圆的方程
考试要求 1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.
2.能根据圆的方程解决一些简单的数学问题与实际问题.
知识梳理
1.圆的定义和圆的方程
定义
平面上到定点的距离等于定长的点的集合叫做圆
方程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
圆心C
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
常用结论
1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
2.圆心在过切点且与切线垂直的直线上.
3.圆心在任一弦的垂直平分线上.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ )
(2)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.( × )
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( √ )
(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是(  )
A.(x-1)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
答案 D
解析 因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2.
2.若曲线C:x2+y2+2ax-4ay-10a=0表示圆,则实数a的取值范围为(  )
A.(-2,0)
B.(-∞,-2)∪(0,+∞)
C.[-2,0]
D.(-∞,-2]∪[0,+∞)
答案 B
解析 由x2+y2+2ax-4ay-10a=0,
得(x+a)2+(y-2a)2=5a2+10a,
由该曲线表示圆,可知5a2+10a>0,解得a>0或a<-2.
3.(多选)下列各点中,在圆(x-1)2+(y+2)2=25的内部的是(  )
A.(0,2) B.(3,3)
C.(-2,2) D.(4,1)
答案 AD
解析 由(0-1)2+(2+2)2<25知(0,2)在圆内;由(3-1)2+(3+2)2>25知(3,3)在圆外;由(-2-1)2+(2+2)2=25知(-2,2)在圆上,由(4-1)2+(1+2)2<25知(4,1)在圆内.
题型一 圆的方程
例1 (1)(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为________________________________________________________________________
________________________________________________________________________.
答案 (x-2)2+(y-3)2=13或(x-2)2+(y-1)2=5或2+2=或2+(y-1)2=
解析 依题意设圆的方程为x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0.
若过(0,0),(4,0),(-1,1),

解得满足D2+E2-4F>0,
所以圆的方程为x2+y2-4x-6y=0,
即(x-2)2+(y-3)2=13;
若过(0,0),(4,0),(4,2),

解得满足D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),

解得满足D2+E2-4F>0,
所以圆的方程为x2+y2-x-y=0,
即2+2=;
若过(-1,1),(4,0),(4,2),

解得满足D2+E2-4F>0,
所以圆的方程为
x2+y2-x-2y-=0,
即2+(y-1)2=.
(2)(2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档