下载此文档

2024年高考数学一轮复习(人教版) 第8章 §8.4 直线与圆、圆与圆的位置关系.docx


高中 高三 下学期 数学 教科版

1340阅读234下载15页400 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2024年高考数学一轮复习(人教版) 第8章 §8.4 直线与圆、圆与圆的位置关系.docx
文档介绍:
§8.4 直线与圆、圆与圆的位置关系
考试要求 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)
图形
量的关系
外离
d>r1+r2
外切
d=r1+r2
相交
|r1-r2|<d<r1+r2
内切
d=|r1-r2|
内含
d<|r1-r2|
3.直线被圆截得的弦长
(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2.
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=·.
常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若两圆没有公共点,则两圆一定外离.( × )
(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.( √ )
(4)在圆中最长的弦是直径.( √ )
教材改编题
1.直线3x+4y=5与圆x2+y2=16的位置关系是(  )
A.相交 B.相切
C.相离 D.相切或相交
答案 A
解析 圆心到直线的距离为d==1<4,所以直线与圆相交.
2.直线m:x+y-1=0被圆M:x2+y2-2x-4y=0截得的弦长为(  )
A.4 B.2 C. D.
答案 B
解析 ∵x2+y2-2x-4y=0,
∴(x-1)2+(y-2)2=5,
∴圆M的圆心坐标为(1,2),半径为,
又点(1,2)到直线x+y-1=0的距离d==,
∴直线m被圆M截得的弦长等于2=2.
3.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为(  )
A.±3 B.±5
C.3或5 D.±3或±5
答案 D
解析 圆C1与圆C2的圆心距为d==|a|.当两圆外切时,有|a|=4+1=5,∴a=±5;当两圆内切时,有|a|=4-1=3,∴a=±3.
题型一 直线与圆的位置关系
命题点1 位置关系的判断
例1 (1)(多选)(2021·新高考全国Ⅱ)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是(  )
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
答案 ABD
解析 圆心C(0,0)到直线l的距离d=,
若点A(a,b)在圆C上,则a2+b2=r2,
所以d==|r|,则直线l与圆C相切,故A正确;
若点A(a,b)在圆C内,则a2+b2<r2,
所以d=>|r|,
则直线l与圆C相离,故B正确;
若点A(a,b)在圆C外,则a2+b2>r2,
所以d=<|r|,则直线l与圆C相交,故C错误;
若点A(a,b)在直线l上,则a2+b2-r2=0,
即a2+b2=r2,
所以d==|r|,则直线l与圆C相切,故D正确.
(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为(  )
A.相交、相切或相离 B.相交或相切
C.相交 D.相切
答案 C
解析 方法一 直线kx-y+2-k=0的方程可化为k(x-
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档