第8讲 曲线与方程
一、选择题
1.方程(2x+3y-1)(-1)=0表示的曲线是( )
A.两条直线 B.两条射线
C.两条线段 D.一条直线和一条射线
解析 原方程可化为或-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.
答案 D
2.(2017·衡水模拟)若方程x2+=1(a是常数),则下列结论正确的是( )
A.任意实数a方程表示椭圆 B.存在实数a方程表示椭圆
C.任意实数a方程表示双曲线 D.存在实数a方程表示抛物线
解析 当a>0且a≠1时,方程表示椭圆,故选B.
答案 B
3.(2017·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.-=1 B.+=1
C.-=1 D.+=1
解析 ∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆.
∴a=,∴c=1,则b2=a2-c2=,
∴M的轨迹方程为+=1.
答案 D
4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是( )
A.y2=2x B.(x-1)2+y2=4
C.y2=-2x D.(x-1)2+y2=2
解析 如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,
又∵|PA|=1,
∴|PM|==,
即|PM|2=2,∴(x-1)2+y2=2.
答案 D
5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足=λ1+λ2(O为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是( )
A.直线 B.椭圆
C.圆 D.双曲线
解析 设C(x,y),因为=λ1+λ2,
所以(x,y)=λ1(3,1)+λ2(-1,3),即
解得又λ1+λ2=1,
所以+=1,即x+2y=5 ,
所以点C的轨迹为直线,故选A.
答案 A
二、填空题
6.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积为__________.
解析 设P(x,y),由|PA|=2|PB|,
得=2,
∴3x2+3y2-12x=0,即x2+y2-4x=0.
∴P的轨迹为以(2,0)为圆心,半径为2的圆.
即轨迹所包围的面积等于4π.
答案 4π
7.已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若=,则点P的轨迹方程为________.
解析 设P(x,y),R(x1,y1),由=知,点A是线段RP的中点,∴即
∵点R(x1,y1)在直线y=2x-4上,
∴y1=2x1-4,∴-y=2(2-x)-4,即y=2x.
答案 y=2x
8.在△ABC中,||=4,△ABC的内切圆切BC于D点,且||-||=2,则顶点A的轨迹方程为________.
解析 以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E,F分别为两个切点.