下载此文档

人教高中数学解密12 平面向量 (解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载39页2.46 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密12 平面向量 (解析版).docx
文档介绍:
解密12讲:平面向量
【考点解密】
考的一.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.
(2)零向量:长度为0的向量,记作0.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
考点二.向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
交换律:
a+b=b+a;
结合律:
(a+b)+c=a+(b+c)
减法
求a与b的相反向量-b的和的运算
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
|λa|=|λ||a|,
当λ>0时,λa与a的方向相同;
当λ<0时,λa与a的方向相反;
当λ=0时,λa=0
λ(μa)=(λμ)a;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
考点三.向量共线定理
向量b与非零向量a共线的充要条件是:有且只有一个实数λ,使得b=λa.
考点四.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,
使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
考点五.平面向量的坐标表示
(1)向量及向量的模的坐标表示
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),
则=(x2-x1,y2-y1),||=.
(2)平面向量的坐标运算
设a=(x1,y1),b=(x2,y2),
则a+b=(x1+x2,y1+y2),
a-b=(x1-x2,y1-y2),
λa=(λx1,λy1).
考点六.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔x1y2-x2y1=0.
考点七.向量的夹角
已知两个非零向量a和b,作=a,=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].
考点八.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b
投影
|a|cos θ叫做向量a在b方向上的投影
|b|cos θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积
考点九.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
考点十.平面向量数量积的有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
结论
符号表示
坐标表示

|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
|a·b|与|a||b|的关系
|a·b|≤|a||b|
|x1x2+y1y2|≤
【方法技巧】
求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.
【核心题型】
题型一:平面向量的基础知识
1.(2023·江苏南京·南京市秦淮中学校考模拟预测)下列说法中正确的是(   )
A.单位向量都相等
B.平行向量不一定是共线向量
C.对于任意向量,必有
D.若满足且与同向,则
【答案】C
【分析】对于A:根据单位向量的概念即可判断;对于B:根据共线向量的定义即可判断;对于C:分类讨论向量的方向,根据三角形法则即可判断;对于D:根据向量不能比较大小即可判断.
【详解】依题意,
对于A,单位向量模都相等,方向不一定相同,故错误;
对于B,平行向量就是共线向量,故错误;
对于C,若同向共线,,
若反向共线,,
若不共线,根据向量加法的三角形法则及
两边之和大于第三边知.
综上可知对于任意向量,必有,故正确;
对于D,两个向量不能比较大小,故错误.
故选:C.
2.(2023·全国·高三专题练****已知平面向量,是单位向量,且,向量满足,则的最大值为(    )
A. B. C. D.
【答案】A
【分析】根据向量模的定义可得,进而求得,利用向量的线性运算,结合向量模的定义即可求解.
【详解】解
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档