下载此文档

人教高中数学解密18 空间向量在立体几何中的应用(角和距离)(解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载50页4.62 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密18 空间向量在立体几何中的应用(角和距离)(解析版).docx
文档介绍:
解密18 空间向量在立体几何中的应用(角/距离)
【考点解密】
考点一:空间角的向量法解法
角的分类
向量求法
范围
两条异面直线所成的角
设两异面直线 l1,l2 所成的角为θ,其方向向量分别为u,v,则cos θ=|cos〈u,v〉|=
直线与平面所成的角
设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sin θ=|cos 〈u,n〉|=
两个平面的夹角
设平面α与平面β的夹角为θ,平面α,β的法向量分别为n1,n2,则cos θ=|cos 〈n1,n2〉|=
考点二:点P到直线 l 的距离
已知直线l的单位方向向量为u,A是直线l上的定点,P是直线l外一点,设向量在直线l上的投影向量为=a,则点P到直线l的距离为 (如图).
考点三:点P到平面α的距离
设平面α的法向量为n,A是平面α内的定点,P是平面α外一点,则点P到平面α的距离为(如图).
【核心题型】
题型一:空间向量求线面角/面面角
1.(2023·湖南邵阳·统考二模)如图所示,在矩形中,,,平面,且,点为线段(除端点外)上的动点,沿直线将翻折到,则下列说法中正确的是(    )
A.当点固定在线段的某位置时,点的运动轨迹为球面
B.存在点,使平面
C.点到平面的距离为
D.异面直线与所成角的余弦值的取值范围是
【答案】D
【分析】当点固定在线段的某位置时,线段的长度为定值,,过作于点,为定点,的长度为定值,由此可判断A;无论在(端点除外)的哪个位置,均不与垂直,即可判断B;以,,为x,y,z的正方向建立空间直角坐标系,求出平面的法向量为,由点到平面的距离公式求解,即可判断C;设,,利用向量夹角公式求解,即可判断D.
【详解】
选项A:当点固定在线段的某位置时,线段的长度为定值,,过作于点,为定点,
的长度为定值,且在过点与垂直的平面内,故的轨迹是以为圆心,为半径的圆,故A错;
选项B:无论在(端点除外)的哪个位置,均不与垂直,故不与平面垂直,故B错;
选项C:以,,为x,y,z的正方向建立空间直角坐标系,则,,,.

设平面的法向量为,取,
则点到平面的距离为,故C错;
选项D:设,,,,设与所成的角为,则,故D正确.
故选:D.
2.(2023春·湖北·高二校联考阶段练****如图,在三棱柱中,是边长为的等边三角形,,,平面平面,为线段的中点.
(1)求证:;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析
(2)
【分析】(1)取中点,由面面垂直和线面垂直的性质和勾股定理可证得,,由此可得平面,由线面垂直性质可证得结论;
(2)作,,根据垂直关系,以为坐标原点可建立空间直角坐标系,利用线面角的向量求法可求得结果.
【详解】(1)取中点,连接,
为等边三角形,,
又平面平面,平面,平面平面,平面,
平面,;
,,,,,
又分别为中点,,,
,平面,平面,
平面,.
(2)作,垂足为,作,交于点,
平面平面,平面平面,平面,平面;
由(1)知:平面,平面,
以为坐标原点,正方向为轴,可建立如图所示空间直角坐标系,
,,,
,,
,,,,
,,,
设平面的法向量,
则,令,解得:,,,

即直线与平面所成角的正弦值为.
3.(2023春·重庆沙坪坝·高三重庆八中校考阶段练****如图,在三棱锥中,,,,平面平面,点是线段上的动点.
(1)证明:平面平面;
(2)若点在线段上,,且异面直线与成30°角,求平面和平面夹角的余弦值.
【答案】(1)证明见解析
(2)
【分析】(1)要证明面面垂直,需证明线面垂直,利用垂直关系转化为证明平面,即可证明;
(2)首先建立空间直角坐标系,利用向量公式求点的坐标,并分别求平面和平面的法向量,利用二面角的向量公式,即可求解.
【详解】(1)证明:∵平面平面,且平面平面,,且平面,
∴平面,平面,∴,
∵,
∵平面,平面,
∴平面,
∵平面,∴平面平面;
(2)因为,过点作垂直于平面,
以为原点,为轴正方向,为轴正方向,为轴正方向建立空间直角坐标系,
所以
设,,,
,,
因为异面直线与所成30°角,


由题意知,平面的一个法向量为,,
设平面的一个法向量为,则,
所以,
所以,
平面和平面夹角的余弦值为.
题型二:空间向量求空间距离
4.(2023·宁夏银川·校联考一模)如图,圆锥SO的侧面展开图是半径为2的半圆,AB,CD为底面圆的两条直径,P为SB
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档