下载此文档

人教考点13 数列概念及通项公式(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载26页1.44 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考点13 数列概念及通项公式(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
文档介绍:
考点13 数列概念及通项公式(核心考点讲与练)
数列的概念及简单表示法
1.数列的定义
按照一定次序排列起来的一列数叫做数列,数列中的每一个数叫做这个数列的项.
2.数列的分类
分类标准
类型
满足条件
项数
有穷数列
项数有限
无穷数列
项数无限
项与项
间的大
小关系
递增数列
an+1>an
其中n∈N+
递减数列
an+1<an
常数列
an+1=an
摆动数列
从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列
3.数列的表示法
数列有三种表示法,它们分别是列表法、图象法和解析法.
4.数列的通项公式
(1)通项公式:如果数列{an}的第n项an与n之间的关系可以用一个式子an=f(n)来表示,那么这个公式叫做这个数列的通项公式.
(2)递推公式:如果已知数列{an}的第1项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
5.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(2)裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{an}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.
1.若数列{an}的前n项和为Sn,通项公式为an,则an=
2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.
3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.
4.Sn与an关系问题的求解思路
根据所求结果的不同要求,将问题向两个不同的方向转化.
①利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解;
②利用Sn-Sn-1=an(n≥2)转化为只含an,an-1的关系式,再求解. 
5.由递推关系式求通项公式的常用方法
(1)已知a1且an-an-1=f(n),可用“累加法”求an,即an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1.
(2)已知a1且=f(n),可用“累乘法”求an,即an=··…···a1.
(3)已知a1且an+1=qan+b,则an+1+k=q(an+k)(其中k可由待定系数法确定),可转化为等比数列{an+k}.
(4)形如an+1=(A,B,C为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.
6.在利用裂项相消法求和时应注意:
(1)在把通项裂开后,是否恰好等于相应的两项之差;
(2)要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.
7.用错位相减法求和时,应注意
(1)要善于识别题目类型,特别是等比数列公比为负数的情形;
(2)在写出“Sn”与“qSn”的表达式时应特别注意
与的关系
1. (2022湖北省新高考) 已知数列的首项,其前项和为,若,则__________.
【答案】96
【分析】由题意易得,两式相减可得数列从第二项开始成等比数列,进而可得结果.
【详解】因为,所以,
两式相减得,
又因为,,得,
所以数列从第二项开始成等比数列,
因此其通项公式为,
所以,
故答案为:96.
由递推公式求通项
1.(2022河南省顶级名校9月开学联考)若数列满足:,则数列的通项公式为( )
A. B.
C. D.
【答案】D
分析】利用整体相减的方法即可计算出数列的通项公式
【详解】由①得,当时②
由①②得
当时也满足上式
故选:D
2.(2022辽宁省盘锦市高级中学9月月考)已知数列满足,,且=+-(n≥2),则数列的通项公式为_____________.
【答案】
【分析】化简题设条件得到,得出数列是以为首项,为公差的等差数列,求得则,再利用叠加法,即可求解,得到答案.
【详解】由题意,数列满足(),
两侧同除,可得,即,
所以数列是以为首项,为公差的等差数列,
则,
所以
(),
当时,适合上式,
所以,所以数列的通项公式.
故答案为:
【点睛】关
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档