下载此文档

人教高中数学第六讲基本初等函数解析版.docx


高中 高二 下学期 数学 人教版

1340阅读234下载33页2.02 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第六讲基本初等函数解析版.docx
文档介绍:
第六讲:基本初等函数
【考点梳理】
1.幂函数的概念
一般地,形如()的函数称为幂函数,其中底数为自变量,为常数.
2.几个常见幂函数的图象与性质
函数
图象
定义域
值域
奇偶性
奇函数
偶函数
奇函数
非奇非偶函数
奇函数
单调性
在上单调递增
在上单调递减;在上单调递增
在上单调递增
在上单调递增
在和上单调递减
过定点
过定点
过定点
3.常用结论
(1)幂函数在上都有定义.
(2)幂函数的图象均过定点.
(3)当时,幂函数的图象均过定点,且在上单调递增.
(4)当时,幂函数的图象均过定点,且在上单调递减.
(5)幂函数在第四象限无图象.
4.根式的概念及性质
(1)概念:式子叫做根式,其中叫做根指数,叫做被开方数.
(2)性质:
①(且);
②当为奇数时,;当为偶数时,
5.分数指数幂
①正数的正分数指数幂的意义是(,,且);
②正数的负分数指数幂的意义是(,,且);
③0的正分数指数幂等于0;0的负分数指数幂没有意义.
6.指数幂的运算性质
①;
②;
③.
7.指数函数及其性质
(1)指数函数的概念
函数(,且)叫做指数函数,其中指数是自变量,函数的定义域是.
(2)指数函数的图象和性质
底数
图象
性质
定义域为,值域为
图象过定点
当时,恒有;
当时,恒有
当时,恒有;
当时,恒有
在定义域上为增函数
在定义域上为减函数
注意
指数函数(,且)的图象和性质与的取值有关,应分与来研究
8.对数的概念
(1)对数:一般地,如果,那么数 叫做以为底的对数,记作,其中叫做对数的底数,叫做真数.
(2)牢记两个重要对数:常用对数,以10为底的对数;自然对数,以无理数e=2.71828…为底数的对数.
(3)对数式与指数式的互化:.
9.对数的性质、运算性质与换底公式
(1)对数的性质
根据对数的概念,知对数具有以下性质:
①负数和零没有对数,即;
②1的对数等于0,即;
③底数的对数等于1,即;
④对数恒等式.
(2)对数的运算性质
如果,那么:
①;
②;
③.
(3)对数的换底公式
对数的换底公式:.
换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以为底的自然对数.
换底公式的变形及推广:
①;
②;
③(其中,,均大于0且不等于1,).
10.对数函数及其性质
(1)对数函数的定义
形如(,且)的函数叫做对数函数,其中是自变量,函数的定义域是.
(2)对数函数的图象与性质
图象
性质
定义域:
值域:
过点,即当时,
在上是单调增函数
在上是单调减函数
【典型题型讲解】
考点一:幂函数的定义及其图像
【典例例题】
例1.幂函数在上为增函数,则实数的值为(       )
A. B.0或2 C.0 D.2
【答案】D
【详解】
因为是幂函数,所以,解得或,
当时,在上为减函数,不符合题意,
当时,在上为增函数,符合题意,
所以.
故选:D.
例2.已知幂函数(p,q∈Z且p,q互质)的图象关于y轴对称,如图所示,则(       )
A.p,q均为奇数,且 B.q为偶数,p为奇数,且
C.q为奇数,p为偶数,且 D.q为奇数,p为偶数,且
【答案】D
【详解】
因函数的图象关于y轴对称,于是得函数为偶函数,即p为偶数,
又函数的定义域为,且在上单调递减,则有0,
又因p、q互质,则q为奇数,所以只有选项D正确.
故选:D
【方法技巧与总结】
1、5种特殊幂函数的图像及其性质;
2、幂函数的单调性及奇偶性的性质判断方法.
【变式训练】
1.(2022·广东深圳·高三期末)已知函数的图像关于原点对称,且在定义域内单调递增,则满足上述条件的幂函数可以为______.
【答案】.(答案不唯一)
【分析】利用幂函数的奇偶性、单调性得到指数满足的条件,再写出一个满足题意的幂函数即可.
【详解】设幂函数,
由题意,得为奇函数,且在定义域内单调递增,
所以()或(是奇数,且互质),
所以满足上述条件的幂函数可以为.
故答案为:(答案不唯一).
2.已知幂函数()的图象关于轴对称,且在上是减函数,则的值为______.
【答案】
因为是幂函数,,解得或1,
当时,是偶函数,关于轴对称,在单调递增,不符合
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档