下载此文档

人教高中数学技巧02 填空题的答题技巧(精讲精练)(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载34页2.21 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学技巧02 填空题的答题技巧(精讲精练)(解析版).docx
文档介绍:
技巧02 填空题的答题技巧
【命题规律】
高考的填空题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.
(1)基本策略:填空题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.
(2)常用方法:填空题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.
【核心考点目录】
核心考点一:特殊法速解填空题
核心考点二:转化法巧解填空题
核心考点三:数形结合巧解填空题
核心考点四:换元法巧解填空题
核心考点五:整体代换法巧解填空题
核心考点六:坐标法巧解填空题
核心考点七:赋值法巧解填空题
核心考点八:正难则反法巧解填空题
【真题回归】
1.(2022·浙江·统考高考真题)设点P在单位圆的内接正八边形的边上,则的取值范围是_______.
【答案】
【解析】以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如图所示:
则,,设,于是,
因为,所以,故的取值范围是.
故答案为:.
2.(2022·浙江·统考高考真题)已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是_________.
【答案】
【解析】过且斜率为的直线,渐近线,
联立,得,由,得
而点在双曲线上,于是,解得:,所以离心率.
故答案为:.
3.(2022·浙江·统考高考真题)已知多项式,则__________,___________.
【答案】         
【解析】含的项为:,故;
令,即,
令,即,
∴,
故答案为:;.
4.(2022·全国·统考高考真题)已知中,点D在边BC上,.当取得最小值时,________.
【答案】
【解析】[方法一]:余弦定理
设,
则在中,,
在中,,
所以

当且仅当即时,等号成立,
所以当取最小值时,.
故答案为:.
[方法二]:建系法
令 BD=t,以D为原点,OC为x轴,建立平面直角坐标系.
则C(2t,0),A(1,),B(-t,0)
[方法三]:余弦定理
设BD=x,CD=2x.由余弦定理得
,,
,,
令,则,


当且仅当,即时等号成立.
[方法四]:判别式法
设,则
在中,,
在中,,
所以,记,

由方程有解得:
即,解得:
所以,此时
所以当取最小值时,,即.
   5.(2022·全国·统考高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是________________.
【答案】
【解析】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
【方法技巧与总结】
1、面对一个抽象或复杂的数学问题时,不妨先考虑其特例,这就是数学中常说的特殊化思维策略“特殊化思维”是解高考数学填空题的一种常用解题策略,其实质是把一般情形转化为特殊情形,把抽象问题转化为具体问题,把复杂问题转化为简单问题,实现快速、准确求解的目的.
2、等价转化可以把复杂问题简单化,把陌生问题熟悉化,把原问题等价转化为便于解决的问题,从而得出正确结果.
3、数形结合实际上就是把代数式的精确刻画与几何图形的直观描述有机地结合起来,相互转化,实现形象思维和抽象思维的优势互补.一方面,借助图形的性质使许多抽象概念和关系直观而形象,以利于探索解题途径;另一方面,几何问题代数化,通过数理推证、数量刻画,获得一般化结论.
【核心考点】
核心考点一:特殊法速解填空题
【典型例题】
例1.已知函数是偶函数,则__________.
【答案】1
【解析】函数是偶函数,
为R上的奇函数,
故也为R上的奇函数,
所以时,,
所以,经检验,满足题意,
故答案为:
例2.设,用表示不超过x的最大整数,则“”是“”的__________条件.填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”
【答案】必要不充分
【解析】,即或,当时,可推出;
但当时,如,,此时,
所以“”不能推出“”,即充分性不成立;
,即或,当
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档