下载此文档

人教高中数学技巧03 填空题解法与技巧(讲)【解析版】.docx


高中 高二 下学期 数学 人教版

1340阅读234下载23页1.33 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学技巧03 填空题解法与技巧(讲)【解析版】.docx
文档介绍:
第二篇 解题技巧篇
技巧03 填空题解法与技巧(讲)
考向速览
热点追踪
众所周知,高考的核心功能是“立德树人,服务选才,引导教学”,特别是在发挥“立德树人”功能方面,更加注重“五育”并举,它不但在选择题中有所体现,而且,在填空题中也屡屡出现相关背景的题目,值得我们关注.
1.弘扬传统文化,渗透爱国教育
【典例1】(2022·浙江·统考高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积___________.
【答案】.
【分析】根据题中所给的公式代值解出.
【详解】因为,所以.
故答案为:.
【典例2】(2021·浙江·高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为
,小正方形的面积为,则___________.
【答案】25
【解析】
【分析】
分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.
【详解】
由题意可得,大正方形的边长为:,
则其面积为:,
小正方形的面积:,
从而.
故答案为:25.
【典例3】(2020·浙江·统考高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列就是二阶等差数列,数列 的前3项和是________.
【答案】
【分析】根据通项公式可求出数列的前三项,即可求出.
【详解】因为,所以.
即.
故答案为:.
【综合分析】
以我国古代数学家的研究成果为背景,设计相关计算问题,考查学生的发现问题解决问题的能力、数学运算能力,以及数学文化素养,同时,引导师生关注我国传统数学文化,将爱国主义教育融入其中,展示了数学之美,讴歌了中国古代劳动人民的勤劳与智慧,以及为人类文明作出的突出贡献.
2.弘扬民间艺术,渗透劳美教育
【典例4】(2021·全国·高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.
【答案】 5
【解析】
【分析】
(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.
【详解】
(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;
故对折4次可得到如下规格:,,,,,共5种不同规格;
(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,
设,
则,
两式作差得:

因此,.
故答案为:;.
【典例5】(2020·海南·高考真题)某中学开展劳动实****学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
【答案】
【解析】
【分析】
利用求出圆弧所在圆的半径,结合扇形的面积公式求出扇形的面积,求出直角的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.
【详解】
设,由题意,,所以,
因为,所以,
因为,所以,
因为与圆弧相切于点,所以,
即为等腰直角三角形;
在直角中,,,
因为,所以,
解得;
等腰直角的面积为;
扇形的面积,
所以阴影部分的面积为.
故答案为:.
【综合分析】
1.以学生研究民间剪纸艺术的折纸为背景设计试题,考查了数列的概念与数列的求和计算,突出了“德育为先,立德树人”的思想理念.考查学生的逻辑思维能力、数学建模及数学运算能力. 又对学生进行了“美育”及劳动教育.
2.以劳动教育为背景的考题,再现了学生到工厂劳动实践的场景,引导学生关注劳动、尊重劳动、参加劳动,体现了劳动教育的要求.在考查几何知识、
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档