下载此文档

人教高中数学解密26 概率和统计(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载37页1.96 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密26 概率和统计(解析版).docx
文档介绍:
解密26 概率和统计
【考点解密】
1.离散型随机变量的分布列
(1)随着试验结果变化而变化的变量称为随机变量.所有取值可以一一列出的随机变量称为离散型随机变量.
(2)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则称表
X
x1
x2

xi

xn
P
p1
p2

pi

pn
为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:
①pi≥0,i=1,2,…,n;
②i=1.
离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.
2.两点分布
如果随机变量X的分布列为
X
0
1
P
1-p
p
其中0<p<1,则称离散型随机变量X服从两点分布.
其中p=P(X=1)称为成功概率.
3.离散型随机变量的均值与方差
一般地,若离散型随机变量X的分布列为
X
x1
x2

xi

xn
P
p1
p2

pi

pn
(1)均值
称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
(2)方差
称D(X)=(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根为随机变量X的标准差.
4.均值与方差的性质
(1)E(aX+b)=aE(X)+b.
(2)D(aX+b)=a2D(X).(a,b为常数)
5.超几何分布
一般地,在含有M件次品的N件产品中,任取n件,其中恰有x件次品,
则P(X=k)= (k=0,1,2,…,m),即
X
0
1

m
P

其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
如果一个随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.
6.条件概率及其性质
(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=(P(A)>0).
在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=.
(2)条件概率具有的性质
①0≤P(B|A)≤1;
②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).
7.相互独立事件
(1)对于事件A,B,若事件A的发生与事件B的发生互不影响,则称事件A,B是相互独立事件.
(2)若A与B相互独立,则P(B|A)=P(B).
(3)若A与B相互独立,则A与,与B,与也都相互独立.
(4)P(AB)=P(A)P(B)⇔A与B相互独立.
8.独立重复试验与二项分布
(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.
(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,
则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.
9.两点分布与二项分布的均值、方差
(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
10.正态分布
(1)正态曲线:函数φμ,σ(x)=,x∈(-∞,+∞),其中实数μ和σ为参数(σ>0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.
(2)正态曲线的特点
①曲线位于x轴上方,与x轴不相交;
②曲线是单峰的,它关于直线x=μ对称;
③曲线在x=μ处达到峰值;
④曲线与x轴之间的面积为1;
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;
⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.
(3)正态总体在三个特殊区间内取值的概率值
①P(μ-σ<X≤μ+σ)≈0.682 7;
②P(μ-2σ<X≤μ+2σ)≈0.954 5;
③P(μ-3σ<X≤μ+3σ)≈0.997 3.
【方法技巧】
【核心题型】
题型一:频率分布直方
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档