下载此文档

人教考点19 直线和圆的方程(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载39页2.28 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考点19 直线和圆的方程(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
文档介绍:
考点19 直线和圆的方程(核心考点讲与练)
一、直线与方程
1.直线的倾斜角
(1)定义:x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x轴平行或重合的直线的倾斜角为零度角.
(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;
(3)范围:直线的倾斜角α的取值范围是[0,π).
2.直线的斜率
(1)定义:直线y=kx+b中的系数k叫做这条直线的斜率,垂直于x轴的直线斜率不存在.
(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=(x1≠x2).若直线的倾斜角为θ(θ≠),则k=tan__θ.
3.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点

与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0
(A2+B2≠0)
所有直线
两条直线的位置关系
1.两条直线平行与垂直的判定
(1)两条直线平行
对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
(2)两条直线垂直
如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
2.两直线相交
直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组的解一一对应.
相交⇔方程组有唯一解,交点坐标就是方程组的解;
平行⇔方程组无解;
重合⇔方程组有无数个解.
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=.
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=.
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.
(3)两条平行线间的距离公式
一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=.
圆的方程
1.圆的定义和圆的方程
定义
在平面内,到定点的距离等于定长的点的集合叫做圆
方程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.
四、直线与圆、圆与圆的位置关系
1.直线与圆的位置关系
设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由
消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.
方法位置
关系
几何法
代数法
相交
d<r
Δ>0
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:
位置关系
相离
外切
相交
内切
内含
几何特征
d>R+r
d=R+r
R-r<
d<R+r
d=R-r
d<R-r
代数特征
无实数解
一组实数解
两组实数解
一组实数解
无实数解
公切线条数
4
3
2
1
0
1.求倾斜角的取值范围的一般步骤
(1)求出斜率k=tan α的取值范围.
(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.
2.已知两直线的一般方程
两直线方程l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0中系数A1,B1,C1,A2,B2,C2与垂直、平行的关系:
A1A2+B1B2=0⇔l1⊥l2;
A1B2-A2B1=0且A1C2-A2C1≠0⇔l1∥l2.
3.判断直线与圆的位置关系常见的方法:
(1)几何法:利用d与
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档