下载此文档

人教高中数学第08讲 对数与对数函数 (讲)解析版.docx


高中 高三 下学期 数学 人教版

1340阅读234下载7页159 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第08讲 对数与对数函数 (讲)解析版.docx
文档介绍:
第08讲 对数与对数函数
【学科素养】数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析
【课标解读】
1. 理解对数的概念,掌握对数的运算,会用换底公式.
2.理解对数函数的概念,掌握对数函数的图象、性质及应用.
3.了解对数函数的变化特征.
【备考策略】
1.对数运算的运算;
2.对数函数单调性的应用,如比较函数值的大小;
3.图象过定点;
4.底数分类讨论问题.
【核心知识】
知识点一 对数的概念
如果ax=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
知识点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且a≠1).
(2)对数的运算法则
如果a>0且a≠1,M>0,N>0,那么
①loga(MN)=logaM+logaN;
②loga=logaM-logaN;
③logaMn=nlogaM(n∈R);
④logamMn=logaM(m,n∈R,且m≠0).
(3)换底公式:logbN=(a,b均大于零且不等于1).
知识点三 对数函数及其性质
(1)概念:函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
(2)对数函数的图象与性质
a>1
0<a<1
图象
性质
定义域:(0,+∞)
值域:R
当x=1时,y=0,即过定点(1,0)
当x>1时,y>0;
当0<x<1时,y<0
当x>1时,y<0;
当0<x<1时,y>0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
知识点四 反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.
【特别提醒】
1.换底公式的两个重要结论
(1)logab=;(2)logambn=logab.
其中a>0,且a≠1,b>0,且b≠1,m,n∈R.
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
3.对数函数y=logax(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象只在第一、四象限.
【高频考点】
高频考点一 对数的化简与求值
例1.【2020·全国Ⅲ卷】已知55<84,134<85.设a=log53,b=log85,c=log138,则
A.a<b<c B.b<a<c
C.b<c<a D.c<a<b
【答案】A
【解析】由题意可知、、,,;
由,得,由,得,,可得;
由,得,由,得,,可得.
综上所述,.
【方法技巧】
1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.
2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.
3.ab=N⇔b=logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.
【举一反三】(2021·杭州市七校联考)计算:若a=log43,则2a+2-a
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档