下载此文档

人教高中数学第8章 §8.4 直线与圆、圆与圆的位置关系.docx


高中 高三 下学期 数学 人教版

1340阅读234下载20页721 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第8章 §8.4 直线与圆、圆与圆的位置关系.docx
文档介绍:
§8.4 直线与圆、圆与圆的位置关系
考试要求 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
相离
相切
相交
图形
量化
方程观点
Δ<0
Δ=0
Δ>0
几何观点
d>r
d=r
d<r
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)
图形
量的关系
外离
d>r1+r2
外切
d=r1+r2
相交
|r1-r2|<d<r1+r2
内切
d=|r1-r2|
内含
d<|r1-r2|
3.直线被圆截得的弦长
(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2.
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=·.
常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若直线平分圆的周长,则直线一定过圆心.( √ )
(2)若两圆相切,则有且只有一条公切线.( × )
(3)若直线的方程与圆的方程组成的方程组有解,则直线与圆相交或相切.( √ )
(4)在圆中最长的弦是直径.( √ )
教材改编题
1.直线y=x+1与圆x2+y2=1的位置关系为(  )
A.相切 B.相交但直线不过圆心
C.直线过圆心 D.相离
答案 B
解析 圆心为(0,0),到直线y=x+1即x-y+1=0的距离d==,而0<<1,但是圆心不在直线y=x+1上,所以直线与圆相交,但直线不过圆心.
2.过点(0,1)且倾斜角为的直线l交圆x2+y2-6y=0于A,B两点,则弦AB的长为(  )
A. B.2
C.2 D.4
答案 D
解析 过点(0,1)且倾斜角为的直线l:y-1=x,即x-y+1=0.
∵圆x2+y2-6y=0,即x2+(y-3)2=9,
∴圆心坐标为(0,3),半径r=3,圆心到直线l的距离d==1,
∴直线被圆截得的弦长|AB|=2×=4.
3.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数a=________.
答案 ±2或0
解析 两圆的圆心距d=,
由两圆相切(外切或内切),得=5+1或=5-1,解得a=±2或a=0.
题型一 直线与圆的位置关系
命题点1 位置关系的判断
例1 直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为(  )
A.相交、相切或相离
B.相交或相切
C.相交
D.相切
答案 C
解析 方法一 直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,
该直线恒过定点(1,2).
因为12+22-2×1-8<0,
所以点(1,2)在圆x2+y2-2x-8=0的内部,
所以直线kx-y+2-k=0与圆x2+y2-2x-8=0相交.
方法二 圆的方程可化为(x-1)2+y2=32,所以圆的圆心为(1,0),半径为3.圆心到直线kx-y+2-k=0的距离为=≤2<3,所以直线与圆相交.
思维升华 判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系.
(2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.
命题点2 弦长问题
例2 (1)(多选)直线y=kx-1与圆C:(x+3)2+(y-3)2=36相交于A,B两点,则AB的长度可能为(  )
A.6 B.8 C.12 D.16
答案 BC
解析 因
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档