下载此文档

人教高中数学第25讲 数形结合思想(教师版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载34页9.33 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第25讲 数形结合思想(教师版).docx
文档介绍:
数形结合思想
数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学****时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
在数学学****和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的****惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
数形结合,数形转化常从一下几个方面:
(1)集合的运算及文氏图
(2)函数图象,导数的几何意义
(3)解析几何中方程的曲线
(4)数形转化,以形助数的还有:数轴、函数图象、单位圆、三角函数线或数式的结构特征等;
取值范围,最值问题,方程不等式解的讨论,有解与恒成立问题等等,许多问题还可以通过换元转化为具有明显几何意义的问题,借助图形求解。
应用一:数学文化中的数形结合
一、单选题
1.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”,在数学学****和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象特征,如函数的图象大致形状是(    )
A. B.
C. D.
【答案】D
【分析】首先求出函数的定义域,再判断函数的单调性,即可得解.
【详解】解:对于函数,则函数的定义域为,
又在和上单调递增,
在和上单调递增,
所以在和上单调递增,
又,
所以为奇函数,函数图象关于原点对称,故符合题意的只有D.
故选:D
2.华罗庚是享誉世界的数学大师,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”.告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.若函数(且)的大致图象如图,则函数的大致图象是(    )
A. B. C. D.
【答案】C
【分析】根据题意,求得,结合指数函数的图象与性质以及图象变换,即可求解.
【详解】由题意,根据函数的图象,可得,
根据指数函数的图象与性质,
结合图象变换向下移动个单位,可得函数的图象只有选项C符合.
故选:C.
3.我国著名数学家华岁庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学****和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数的图象大致是(    )
A. B.
C. D.
【答案】C
【分析】判断函数的奇偶性,结合函数的值的情况,即可判断答案.
【详解】由题意知函数的定义域为,
函数满足,函数为奇函数,图象关于原点对称,
当时,, ,则 ,图象在x轴上方,故A错误,
当 时, ,则,图象在x轴下方,故错误,
结合函数的奇偶性可知,当时,;当时,,
符合题意的图象只有C中图象,
故选:C.
4.我国著名数学家华罗庚曾说过:“数无形时少直观,形无数时难入微;数形结合百般好,隔离分家万事休”.函数的部分图像大致为(    )
A. B.
C. D.
【答案】A
【分析】根据函数的奇偶性和特殊点的函数值,即可得解.
【详解】∵ , ,

则是奇函数,其图像关于原点对称,排除选项B、D;
对 故可排除选项C.
故选:A.
5.分形是由混沌方程组成,其最大的特点是自相似性:当我们拿出图形的一部分时,它与整体的形状完全一样,只是大小不同.谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,它的构造方法是:将一个正方形均分为9个小正方形,再将中间的正方形去掉,称为一次迭代;然后对余下的8个小正方形做同样操作,直到无限次.如图,进行完二次迭代后的谢尔宾斯基地毯如图,从正方形内随机取一点,该点取自阴影部分的概率为(  
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档