下载此文档

人教高中数学解密06 空间点、线、面的位置关系(讲义).doc


高中 高三 下学期 数学 人教版

1340阅读234下载15页6.10 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密06 空间点、线、面的位置关系(讲义).doc
文档介绍:
解密06 空间点、线、面的位置关系
核心考点
读高考设问知考法
命题解读
空间点、线、面位置关系
【2019新课标Ⅲ文理8】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小;
2.以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题.
【2019新课标1文16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为______.
【2017新课标Ⅰ文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  ).
【2020新课标3文19】如图,在长方体中,点,分别在棱,上,且,.证明:(1)当时,;(2)点在平面内.
【2019新课标1文19】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.
空间平行、垂直关系的证明
【2020江苏卷】在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;
(2)求证:平面AB1C⊥平面ABB1.
【2019北京卷】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.
(1)求证:BD⊥平面PAC;
(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
平面图形中的折叠问题
【2020新课标1理16】如图,在三棱锥的平面展开图中,,,,,,则=______.
【2019新课标3文19】图①是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图②.(1)证明图②中的四点共面,且平面平面;(2)求图②中的四边形的面积.
【2018新课标1文18】如图,在平行四边形中,,,以为折痕将折起,使点到达点的位置,且.(1)证明:平面平面;
(2)为线段上一点,为线段上一点,且,求三棱锥的体积.
【2016新课标2理19】如图所示,菱形的对角线与交于点,,,点,分别在,上,,交于点,将沿折到的位置,.(1)证明:平面;(2)求二面角的正弦值.

核心考点一 空间点、线、面位置关系
1.判断与空间位置关系有关的命题的方法:
(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断.
(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.
2.两点注意:
(1)平面几何中的结论不能完全引用到立体几何中;
(2)当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.
1.【2019新课标Ⅲ文理8】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则(  )
A.BM=EN,且直线BM,EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM,EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
【解析】连接BD,BE,
∵点N是正方形ABCD的中心,
∴点N在BD上,且BN=DN,
∴BM,EN是△DBE的中线,∴BM,EN必相交.
连接CM,设DE=a,则EC=DC=a,MC=a,
∵平面ECD⊥平面ABCD,且BC⊥DC, ∴BC⊥平面EDC,
则BD=a,BE==a,BM==a,
又EN==a,故BM≠EN.故选B.
2.【2019新课标1文16】已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为
,那么P到平面ABC的距离为______.
【解析】作分别垂直于,平面,连,
知,,
平面,平面,

,.,

,为平分线,
,又,

3.【2020新课标3文19】如图,在长方体中,点,分别在棱,上,且,.证明:(1)当时,;(2)点在平面内.
      
【解析】(1)因为长方体,所以平面,
因为长方体,所以四边形为正方形
因为平面,因此平面,
因为平面,所以;
(2)在上取点使得,连,
因为,所以
所以四边形为平行
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档