下载此文档

人教高中数学解密08 三角函数图像与性质(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载48页2.70 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学解密08 三角函数图像与性质(解析版).docx
文档介绍:
解密09讲: 三角函数图像与性质
【考点解密】
1.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
值域
[-1,1]
[-1,1]
R
周期性


π
奇偶性
奇函数
偶函数
奇函数
递增区间
[2kπ-π,2kπ]
递减区间
[2kπ,2kπ+π]
对称中心
(kπ,0)
对称轴方程
x=kπ+
x=kπ
2.简谐运动的有关概念
y=Asin(ωx+φ)(A>0,ω>0),x≥0
振幅
周期
频率
相位
初相
A
T=
f==
ωx+φ
φ
3.用“五点法”画y=Asin(ωx+φ)(A>0,ω>0)一个周期内的简图时,要找五个特征点
x
ωx+φ
0
π

y=Asin(ωx+φ)
0
A
0
-A
0
4.函数y=sin x的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象的两种途径
【方法技巧】
1.求解三角函数的值域(最值)常见到以下几种类型
(1)形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值).求三角函数取最值时相应自变量x的集合时,要注意考虑三角函数的周期性.
(2)形如y=asin2x+bsin x+c(或y=acos2x+bcos x+c),x∈D的函数的值域或最值时,通过换元,令t=sin x(或cos x),将原函数转化为关于t的二次函数,利用配方法求值域或最值即可.求解过程中要注意t=sin x(或cos x)的有界性.
(3)形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,化为关于t的二次函数求值域(最值).
2.求三角函数周期的方法
(1)定义法:即利用周期函数的定义求解.
(2)公式法:对形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,T=;
对形如y=Atan(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,.
形如y=|Asin ωx|(或y=|Acos ωx|)的函数的周期T=.
(3)观察法:即通过观察函数图象求其周期.
3.三角函数周期性与奇偶性、对称性的解题策略
(1)探求三角函数的周期,常用方法是公式法,即将函数化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,再利用公式求解.
(2)判断函数y=Asin(ωx+φ)或y=Acos(ωx+φ)是否具备奇偶性,关键是看它能否通过诱导公式转化为y=Asin ωx(Aω≠0)或y=Acos ωx(Aω≠0)其中的一个.
(3)对于可化为f(x)=Asin(ωx+φ)(或f(x)=Acos(ωx+φ))形式的函数,如果求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z)(或令ωx+φ=kπ(k∈Z)),求x即可;如果求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)(或令ωx+φ=+kπ(k∈Z)),求x即可.
(4)对于可化为f(x)=Atan(ωx+φ)形式的函数,如果求f(x)的对称中心的横坐标,只需令ωx+φ=(k∈Z),求x即可.
4.求函数y=tan(ωx+φ)的单调区间的方法
y=tan(ωx+φ)(ω>0)的单调区间的求法是把ωx+φ看成一个整体,解-+kπ<ωx+φ<+kπ,k∈Z即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间.
5.(1)由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.
(2)当x的系数不为1时,特别注意先提取系数,再加减.
(3)横向伸缩变换,只变ω,而φ不发生变化.
6.若设所求解析式为y=Asin(ωx+φ),则在观察函数图象的基础上,可按以下规律来确定A,ω,φ.
(1)由函数图象上的最大值、最小值来确定|A|.
(2)由函数图象与x轴的交点确定T,由T=,确定ω.
(3)y=Asin(ωx+φ)中φ的确定方法
①代入法:把图象上的一个已知点代入(此时A,ω已知)或代入图象与x轴的交点求解(此时要注意交点在上升区间上还是在下降区间上),或把图象的最高点或最低点代入.
②五点对应法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.
“五点”的ωx+φ的值具体如下:
“第一点”(即图象上升时与
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档