下载此文档

人教考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载42页2.79 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考点21双曲线(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
文档介绍:
考点21双曲线(核心考点讲与练)
1.双曲线的定义
平面内与两个定点F1,F2的距离差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:
(1)若a<c时,则集合P为双曲线;
(2)若a=c时,则集合P为两条射线;
(3)若a>c时,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图 形


范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长度|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长度|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
1.(1)在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支.若是双曲线的一支,则需确定是哪一支.
(2)在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义是经常使用的知识点.另外,还经常结合||PF1|-|PF2||=2a,运用平方的方法,建立它与|PF1||PF2|的联系.
2.与双曲线几何性质有关问题的解题策略
在研究双曲线的性质时,实半轴、虚半轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e=是一个比值,故只需根据条件得到关于a,b,c的一个关系式,利用b2=c2-a2消去b,然后变形求e,并且需注意e>1.
3.圆锥曲线的弦长
(1)圆锥曲线的弦长
直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫作圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.
(2)圆锥曲线的弦长的计算
设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|==|x1-x2|= ·|y1-y2|.(抛物线的焦点弦长|AB|=x1+x2+p=,θ为弦AB所在直线的倾斜角).
双曲线的定义
一、单选题
1.(2022·广东潮州·二模)若点P是双曲线上一点,,分别为的左、右焦点,则“”是“”的(       ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【分析】根据双曲线的定义和充分不必要条件的定义可得答案.
【详解】由题意可知,,,,
若,则,或1(舍去),
若,,或13,
故“”是“”的充分不必要条件.
故选:A.
2.(2022·天津河西·一模)已知双曲线的左、右焦点分别为、,c是双曲线C的半焦距,点A是圆上一点,线段交双曲线C的右支于点B,,,则双曲线C的离心率为(       ).
A. B. C. D.
【答案】A
【分析】根据已知及双曲线的定义,可把用a表示,再用勾股定理推出,在中,利用勾股定理建立a,c的关系式即可求出离心率.
【详解】如下图,由题意可知,由双曲线定义可知,
易得,由勾股定理可得,在中,再由勾股定理得,所以.
故选:A.
3.(2022·辽宁沈阳·二模)已知双曲线的两个焦点为、,点M,N在C上,且,,则双曲线C的离心率为(       )
A. B.
C. D.
【答案】D
【分析】根据,,由双曲线对称性可知,直线与交于y轴上一点P,且为等腰直角三角形,可得的坐标,分别求出,再根据双曲线的定义即可得出答案.
【详解】解:因为,,
由双曲线对称性可知,直线与交于y轴上一点P,
且为等腰直角三角形,
所有,
如图,则,,,
所以,,
则,即,
则.
故选:D.
4.(2022·湖南永州·三模)已知双曲线的左、右焦点分别为、,为坐标原点,点在双曲线的右支上,(为双曲线的半焦距),直线与双曲线右支交于另一个点,
,则双曲线的离心率为(       )
A. B. C. D.
【答案】D
【分析】根据双曲线的定义,结合直角三角形的相关性质可得解.
【详解】
如图所示,
由,,得,

设,
由双曲线定义得,
所以,,,
又,即,解得,
所以,,
又,即,即,
所以离心率,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档