下载此文档

人教考向38 圆的方程-备战2022年高考数学一轮复习考点微专题.doc


高中 高三 下学期 数学 人教版

1340阅读234下载26页1.92 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向38 圆的方程-备战2022年高考数学一轮复习考点微专题.doc
文档介绍:
考向38 圆的方程
1.(2021·全国高考真题)已知直线与圆,点,则下列说法正确的是( )
A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切
【答案】ABD
【分析】
转化点与圆、点与直线的位置关系为的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.
【详解】
圆心到直线l的距离,
若点在圆C上,则,所以,
则直线l与圆C相切,故A正确;
若点在圆C内,则,所以,
则直线l与圆C相离,故B正确;
若点在圆C外,则,所以,
则直线l与圆C相交,故C错误;
若点在直线l上,则即,
所以,直线l与圆C相切,故D正确.
故选:ABD.
2.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆的圆心重合,长轴长等于圆的直径,那么短轴长等于______.
【答案】
【分析】
由于是圆,可得,通过圆心和半径计算,即得解
【详解】
由于是圆,
即:圆
其中圆心为,半径为4
那么椭圆的长轴长为8,即,,,
那么短轴长为
故答案为:
1.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为
(1)根据题意,选择标准方程或一般方程;
(2)根据条件列出关于a,b,r或D、E、F的方程组;
(3)解出a、b、r或D、E、F代入标准方程或一般方程.
2.求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:圆心在过切点且垂直于切线的直线上;圆心在任一弦的中垂线上;两圆内切或外切时,切点与两圆圆心三点共线.②代数法,即设出圆的方程,用待定系数法求解.
3.与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.常用结论有:
(1)圆外一点P到圆C上点的距离距离的最大值等于,最小值等于.
(2)圆C上的动点P到直线l距离的最大值等于点C到直线l距离的最大值加上半径,最小值等于点C到直线l距离的最小值减去半径.
(3)设点M是圆C内一点,过点M作圆C的弦,则弦长的最大值为直径,最小的弦长为.
4.与圆上点(x,y)有关代数式的最值的常见类型及解法.①形如u=型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;②形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;③形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点(a,b)的距离平方的最值问题.
5.与圆的面积的最值问题,一般转化为寻求圆的半径相关的函数关系或者几何图形的关系,借助函数求最值的方法,如配方法,基本不等式法等求解,有时可以通过转化思想,利用数形结合思想求解.
6.求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法.
①直接法:直接根据题目提供的条件列出方程.
②定义法:根据圆、直线等定义列方程.
③几何法:利用圆的几何性质列方程.
④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.
1、圆的方程
圆的标准方程
圆的一般方程
定义
在平面内,到定点的距离等于定长的点的集合叫圆,确定一个圆最基本的要素是圆心和半径
方程
圆心
半径
区别与
联系
(1)圆的标准方程明确地表现出圆的几何要素,即圆心坐标和半径长;
(2)圆的一般方程的代数结构明显,圆心坐标和半径长需要通过代数运算才能得出;
(3)二者可以互化:将圆的标准方程展开可得一般方程,将圆的一般方程配方可得标准方程
/2、点与圆的位置关系
标准方程的形式
一般方程的形式
点(x0,y0)在圆上
点(x0,y0)在圆外
点(x0,y0)在圆内
【知识拓展】
1、当D2+E2-4F = 0时,方程x2+y2+Dx+Ey+F = 0表示一个点;当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F = 0没有意义,不表示任何图形.
2、最值问题
(1).对于圆中的最值问题,一般是根据条件列出关于所求目标的式子——函数关系式,
(2).然后根据函数关系式的特征选用参数法、配方法、判别式法等,应用不等式的性质求出最值.
特别地,要利用圆的几何性质,根据式子的几何意义求解,这正是数形结合思想的应用.
3、与圆有关的对称问题
(1).圆的轴对称性:圆关于直径所在的直线对称.
(2).圆关于点对称:
①求已知
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档