下载此文档

人教考向47 古典概型(重点)-备战2022年高考数学一轮复习考点微专题.doc


高中 高三 下学期 数学 人教版

1340阅读234下载20页1.26 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向47 古典概型(重点)-备战2022年高考数学一轮复习考点微专题.doc
文档介绍:
考向47 古典概型
1.(2021·山东·高考真题)甲、乙、丙三位同窗打算利用假期外出游览,约定每人从泰山、孔府这两处景点中任选一处,那么甲、乙两位同窗恰好选取同一处景点的概率是( )
A. B. C. D.
【答案】D
【分析】
应用古典概型的概率求法,求甲、乙两位同窗恰好选取同一处景点的概率即可.
【详解】
甲、乙两位同窗选取景点的种数为,其中甲、乙两位同窗恰好选取同一处景点的种数为2,
∴甲、乙两位同窗恰好选取同一处景点的概率为.
故选:D
2.(2013·广东·高考真题(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量)
频数(个)
5
10
20
15
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
【答案】(1) (2)1个 (3)
【详解】
试题分析:(1)用苹果的重量在[90,95)的频数除以样本容量,即为所求.
(2)根据重量在[80,85)的频数所占的比例,求得重量在[80,85)的苹果的个数.
(3)用列举法求出所有的基本事件的个数,再求出满足条件的事件的个数,即可得到所求事件的概率.
试题解析:(1)重量在的频率为:;
(2)若采用分层抽样的方法从重量在和的苹果中共抽取4个,则重量在的个数为:;
(3)设在中抽取的一个苹果为,在中抽取的三个苹果分别为,从抽出的个苹果中,任取个共有,,,,,种情况.
其中符合 “重量在和中各有一个”的情况共有3种;设“抽出的个苹果中,任取个,重量在和中各有一个”为事件,则事件的概率.
考点:1、古典概型及其概率计算公式;2、分层抽样方法.
【方法点晴】本题考查古典概型问题,用列举法计算可以列举出基本事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想.本题还考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.
1.求古典概型的基本步骤:
(1)算出所有基本事件的个数n.
(2)求出事件A包含的所有基本事件数m.
(3)代入公式,求出P(A).
2.解题技巧:
列出全部基本事件,找到符合条件的基本事件,再利用古典概型公式即可得到答案.
古典概型
(1)古典概型的特征:
①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.
(2)古典概型的概率计算的基本步骤:
①判断本次试验的结果是否是等可能的,设出所求的事件为A;
②分别计算基本事件的总数n和所求的事件A所包含的基本事件个数m;
③利用古典概型的概率公式P(A)=,求出事件A的概率.
(3)频率的计算公式与古典概型的概率计算公式的异同
名称
不同点
相同点
频率计
算公式
频率计算中的m,n均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值
都计算了一个比值
古典概型的
概率计算公式
是一个定值,对同一个随机事件而言,m,n都不会变化
【知识拓展】
1.(2017·湖南·长郡中学一模(理))小王同学有三支款式相同、颜色不同的圆珠笔,每支圆珠笔都有一个与之同颜色的笔帽,平时 小王都将笔杆和笔帽套在一起,但偶尔也会将笔杆和笔帽随机套在一起,则小王将两支笔的笔杆和笔帽的颜色混搭的概率是( )
A. B. C. D.
2.(2021·江西景德镇·模拟预测(理))蒲丰是18世纪的法国博物学家,曾在1777年出版的著作中提出了“投针问题”:取一张画有若干条等矩平行线的白纸,随机地向纸上投掷长度小于平行线间距的短针,记录下针与线的相交情况,可用来估计圆周率.蒲丰发现当短针长度恰好为平行线间距一半时,针线相交的概率为.现用针长为平行线间距一半的短针投掷5000次,记录下短针与线相交1590次,则此次投针实验中得到的圆周率的近似值约为( )
A.3.12 B.3.13 C.3.14 D.3.15
3.(2021·上海普陀·模拟预测)已知函数的定义域为,值域为,则函数在定义域上存在反函数的概率为__.
4.(2021·上海·模拟预测)一个袋中装有9个形状大小完全相同的球,球的编号分别为1,2,…,9,随机依次摸出两个球(不放回),则两个球编号之
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档