下载此文档

人教考向51 变量间的相关关系、统计案例-备战2022年高考数学一轮复习考点微专题.doc


高中 高三 下学期 数学 人教版

1340阅读234下载34页2.21 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向51 变量间的相关关系、统计案例-备战2022年高考数学一轮复习考点微专题.doc
文档介绍:
试卷第4页,共17页
考向51 变量间的相关关系、统计案例
1.(2020·全国·高考真题(理))某校一个课外学****小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
【答案】D
【分析】
根据散点图的分布可选择合适的函数模型.
【详解】
由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.
故选:D.
【点睛】
本题考查函数模型的选择,主要观察散点图的分布,属于基础题.
2.(2020·海南·高考真题)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了
试卷第4页,共17页
天空气中的和浓度(单位:),得下表:

32
18
4
6
8
12
3
7
10
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:

(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
0.050
0.010
0.001
3.841
6.635
10.828
【答案】(1);(2)答案见解析;(3)有.
【分析】
(1)根据表格中数据以及古典概型的概率公式可求得结果;
(2)根据表格中数据可得列联表;
(3)计算出,结合临界值表可得结论.
【详解】
(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
试卷第4页,共17页
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64
16
80
10
10
20
合计
74
26
100
(3)根据列联表中的数据可得

因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
【点睛】
本题考查了古典概型的概率公式,考查了完善列联表,考查了独立性检验,属于中档题.
1. 回归分析问题的类型及解题方法
(1)求回归方程
①根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关.
②利用公式,求出回归系数.
③待定系数法:利用回归直线过样本点的中心求系数.
(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.
试卷第4页,共17页
(3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数.
(4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.
2.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.
3.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:
(1)根据样本数据制成2×2列联表:
(2)根据公式χ2=计算χ2;
(3)通过比较χ2与临界值的大小关系来作统计推断.
1.变量间的相关关系
(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关.
2.两个变量的线性相关
(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.
(2)回归方程为=x+,其中,.
(3)通过求的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.
(4)相关系数:
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关.
r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|
试卷第4页,共17页
r|大于0.75时,认为两个变量有很强的线性相关性.
3.独立
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档