下载此文档

人教高中数学专题5 圆锥曲线中的斜率问题(解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载30页1.84 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题5 圆锥曲线中的斜率问题(解析版).docx
文档介绍:
专题5 圆锥曲线中的斜率问题
一、考情分析
斜率问题也是高考圆锥曲线考查的热点,主要有以下类型:利用斜率求解三点共线问题;与斜率之和或斜率之积为定值有关的问题;与斜率有关的定值问题;与斜率有关的范围问题.
二、解题秘籍
(一) 利用斜率求解三点共线问题
利用斜率判断或证明点共线,通常是利用.
【例1】(2023届广东省部分学校高三上学期联考)设直线与双曲线:的两条渐近线分别交于,两点,且三角形的面积为.
(1)求的值;
(2)已知直线与轴不垂直且斜率不为0,与交于两个不同的点,,关于轴的对称点为,为的右焦点,若,,三点共线,证明:直线经过轴上的一个定点.
【解析】(1)双曲线:的渐近线方程为,
不妨设,
因为三角形的面积为,所以,
所以,又,所以.
(2)双曲线的方程为:,所以右焦点的坐标为,
若直线与轴交于点,故可设直线的方程为,
设,,则,
联立,得,
且,
化简得且,
所以,,
因为直线的斜率存在,所以直线的斜率也存在,
因为,,三点共线,所以,
即,即,
所以,
因为,所以,
所以,
所以,
化简得,所以经过轴上的定点.
【例2】(2022届北京市一六一中学高三上学期期中)已知椭圆的左、右顶点分别为A,B,右焦点为F,直线.
(1)若椭圆W的左顶点A关于直线的对称点在直线上,求m的值;
(2)过F的直线与椭圆W相交于不同的两点C,D(不与点A,B重合),直线与直线相交于点M,求证:A,D,M三点共线.
【解析】(1)由题意知,
直线的斜率存在,且斜率为,
设点A关于直线对称的点为,则,
所以线段的中点在直线上,又,,
有,解得或,
所以;
(2)已知,
当直线的斜率不存在时,:x=1,此时,
有,所以直线,当时,,所以,
所以,所以,
即A、D、M三点共线;
当直线的斜率存在时,设直线:,
则,得,
,
设,则,
直线BC的方程为,令,得,
所以直线AD、AM的斜率分别为,
,
上式的分子
,
所以,即A、D、M三点共线.
综上,A、D、M三点共线.
(二)根据两直线斜率之和为定值研究圆锥曲线性质
1.设点是椭圆C:上一定点,点A,B是椭圆C上不同于P的两点,若,则时直线AB斜率为定值,若,则直线AB过定点,
2. 设点是双曲线C:一定点,点A,B是双曲线C上不同于P的两点,若,则时直线AB斜率为定值,若,则直线AB过定点;
3. 设点是抛物线C:一定点,点A,B是抛物线C上不同于P的两点,若,则时直线AB斜率为定值,若,则直线AB过定点;
【例3】(2023届山西省山西大附属中学高三上学期诊断)若点P在直线上,证明直线关于对称,或证明直线平分,可证明.
已知椭圆:的左、右焦点分别为,,点是椭圆的一个顶点,是等腰直角三角形.
(1)求椭圆的标准方程;
(2)过点分别作直线,交椭圆于A,两点,设两直线,的斜率分别为,,且,证明:直线过定点.
【解析】(1)由题意点是椭圆的一个顶点,知,
因为是等腰直角三角形,所以,即,
所以椭圆的标准方程为:.
(2)若直线的斜率存在,设其方程为,由题意知.
由,得,
由题意知,设,,
所以,,
因为,所以
,
所以,整理得,
故直线的方程为,即,
所以直线过定点.
若直线的斜率不存在,设其方程为,,.
由题意得,解得,
此时直线的方程为,显然过点.
综上,直线过定点.
【例4】(2023届江苏省南通市如皋市高三上学期教学质量调研)已知点在双曲线上,直线l交C于 两点,直线 的斜率之和为.
(1)求l的斜率;
(2)若,求的面积.
【解析】(1)将点代入中,得,即,
解得 ,故双曲线方程为;
由题意知直线l的斜率存在,设,设,,
则联立直线与双曲线得:,
需满足,
故,,
,
化简得:,
故,
即 ,即,
由题意可知直线l不过A点,即,
故l的斜率
(2)设直线AP的倾斜角为,由,,
得,(负值舍去),
由直线 的斜率之和为,可知,即,
则,得,即,
联立,及得,,
将,代入中,得,
故,,
而,,
由,得,

.
【例5】(2022届广东省深圳市高三上学期月考)已知抛物线的焦点为,其中为的准线上一点,是坐标原点,且.
(1)求抛物线的方程;
(2)过的动直线与交于两点,问:在轴上是否存在定点,使得轴平分若存在,求出点的坐标;若不存在,请说明理由.
【解析】(1)抛物线的焦点为
设,则
因为,
所以,得.
所以抛物线的方程为;
(2)假设在轴上存在定点,使得轴平分.
设动直线的方程为,点,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档