下载此文档

人教高中数学专题06 导数与函数的零点问题(讲)【解析版】.docx


高中 高一 下学期 数学 人教版

1340阅读234下载28页1.57 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题06 导数与函数的零点问题(讲)【解析版】.docx
文档介绍:
第一篇 热点、难点突破篇
专题06 导数与函数的零点问题(讲)
真题体验 感悟高考
1.(2021·北京·高考真题)已知函数,给出下列四个结论:
①若,恰 有2个零点;
②存在负数,使得恰有1个零点;
③存在负数,使得恰有3个零点;
④存在正数,使得恰有3个零点.
其中所有正确结论的序号是_______.
【答案】①②④
【分析】由可得出,考查直线与曲线的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误.
【详解】对于①,当时,由,可得或,①正确;
对于②,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,存在,使得只有一个零点,②正确;
对于③,当直线过点时,,解得,
所以,当时,直线与曲线有两个交点,
若函数有三个零点,则直线与曲线有两个交点,
直线与曲线有一个交点,所以,,此不等式无解,
因此,不存在,使得函数有三个零点,③错误;
对于④,考查直线与曲线相切于点,
对函数求导得,由题意可得,解得,
所以,当时,函数有三个零点,④正确.
故答案为:①②④.
【点睛】思路点睛:已知函数的零点或方程的根的情况,求解参数的取值范围问题的本质都是研究函数的零点问题,求解此类问题的一般步骤:
(1)转化,即通过构造函数,把问题转化成所构造函数的零点问题;
(2)列式,即根据函数的零点存在定理或结合函数的图象列出关系式;
(3)得解,即由列出的式子求出参数的取值范围.
2.(2019·全国·高考真题(文))已知函数.证明:
(1)存在唯一的极值点;
(2)有且仅有两个实根,且两个实根互为倒数.
【答案】(1)见详解;(2)见详解
【分析】(1)先对函数求导,根据导函数的单调性,得到存在唯一,使得,进而可得判断函数的单调性,即可确定其极值点个数,证明出结论成立;
(2)先由(1)的结果,得到,,得到在内存在唯一实根,记作,再求出,即可结合题意,说明结论成立.
【详解】(1)由题意可得,的定义域为,
由,
得,
显然单调递增;
又,,
故存在唯一,使得;
又当时,,函数单调递增;当时,,函数单调递减;
因此,存在唯一的极值点;
(2)由(1)知,,又,
所以在内存在唯一实根,记作.
由得,
又,
故是方程在内的唯一实根;
综上,有且仅有两个实根,且两个实根互为倒数.
【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值、以及函数零点的问题,属于常考题型.
3.(2021·浙江·高考真题)设a,b为实数,且,函数
(1)求函数的单调区间;
(2)若对任意,函数有两个不同的零点,求a的取值范围;
(3)当时,证明:对任意,函数有两个不同的零点,满足.
(注:是自然对数的底数)
【答案】(1)时,在上单调递增;时,函数的单调减区间为,单调增区间为;
(2);
(3)证明见解析.
【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;
(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a的取值范围;
(3)方法一:结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.
【详解】(1),
①若,则,所以在上单调递增;
②若,
当时,单调递减,
当时,单调递增.
综上可得,时,在上单调递增;
时,函数的单调减区间为,单调增区间为.
(2)有2个不同零点有2个不同解有2个不同的解,
令,则,
记,
记,
又,所以时,时,,
则在单调递减,单调递增,,
.
即实数的取值范围是.
(3)[方法一]【最优解】:
有2个不同零点,则,故函数的零点一定为正数.
由(2)可知有2个不同零点,记较大者为,较小者为,

注意到函数在区间上单调递减,在区间上单调递增,
故,又由知,

要证,只需,
且关于的函数在上单调递增,
所以只需证,
只需证,
只需证,
,只需证在时为正,
由于,故函数单调递增,
又,故在时为正,
从而题中的不等式得证.
[方法二]:分析+放缩法
有2个不同零点,不妨设,由得(其中).
且.
要证,只需证,即证,只需证.
又,所以,即.
所以只需证.而,所以,
又,所以只需证.
所以,原命题得证.
[方法三]:
若且,则满足且,由(Ⅱ)知有两个零点且.
又,故进一步有.
由可得且,从而
..
因为,
所以,
故只需证.
又因为在区间内单调递增,故只需证,即,注意时有,故不等式成立.
【整体点评】本题第二、三问均涉及利用导数研
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档