下载此文档

人教专题3.2 函数的单调性与最值 2022年高考数学一轮复习讲练测(讲)解析版.docx


高中 高一 下学期 数学 人教版

1340阅读234下载22页619 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题3.2 函数的单调性与最值 2022年高考数学一轮复习讲练测(讲)解析版.docx
文档介绍:
专题3.2 函数的单调性与最值
新课程考试要求
1.理解函数的单调性,会判断函数的单调性.
2.理解函数的最大(小)值的含义,会求函数的最大(小)值.
核心素养
培养学生数学抽象(例5.6.14.15)、数学运算(例3等)、逻辑推理(例2)、直观想象(例9.10)等核心数学素养.
考向预测
1.确定函数的最值(值域)
2.以基本初等函数为载体,考查函数单调性的判定、函数单调区间的确定、函数单调性的应用(解不等式、确定参数的取值范围、比较函数值大小)、研究函数的最值等,常与奇偶性、周期性结合,有时与导数综合考查.
【知识清单】
1. 函数的单调性
(1)增函数:若对于定义域内的某个区间上的任意两个自变量、,当时,都有,那么就说函数在区间上是增函数;
(2)减函数:若对于定义域内的某个区间上的任意两个自变量、,当时,都有
,那么就说函数在区间上是减函数.
2.函数的最值
1.最大值:一般地,设函数的定义域为,如果存在实数满足:
(1)对于任意的,都有;
(2)存在,使得.
那么,我们称是函数的最大值.
2.最小值:一般地,设函数的定义域为,如果存在实数满足:
(1)对于任意的,都有;
(2)存在,使得.
那么,我们称是函数的最小值.
【考点分类剖析】
考点一 单调性的判定和证明
【典例1】(2020·西藏自治区高三二模(文))下列函数中,在区间上为减函数的是( )
A. B. C. D.
【答案】C
【解析】
对于A选项,函数在区间上为增函数;
对于B选项,函数在区间上为增函数;
对于C选项,函数在区间上为减函数;
对于D选项,函数在区间上为增函数.
故选:C.
【典例2】(2021·全国高一课时练****已知函数f(x)=,证明函数在(-2,+∞)上单调递增.
【答案】证明见解析.
【解析】
∀x1,x2∈(-2,+∞),利用作差法和0比可得函数值大小进而可证得.
【详解】
证明:∀x1,x2∈(-2,+∞),且x1>x2>-2,
f(x)=
则f(x1)-f(x2)=
=,
因为x1>x2>-2,
所以x1-x2>0,x1+2>0,x2+2>0,
所以>0,所以f(x1)>f(x2),
所以f(x)在(-2,+∞)上单调递增.
【规律方法】
掌握确定函数单调性(区间)的4种常用方法
(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.其关键是作差变形,为了便于判断差的符号,通常将差变成因式连乘(除)或平方和的形式,再结合变量的范围、假定的两个自变量的大小关系及不等式的性质进行判断.
(2)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的直观性确定它的单调性.
(3)熟悉一些常见的基本初等函数的单调性.
(4)导数法:利用导数取值的正负确定函数的单调性.
【变式探究】
1.【多选题】(2021·全国高一课时练****设函数f(x)在R上为增函数,则下列结论不一定正确的是( )
A.y=在R上为减函数 B.y=|f(x)|在R上为增函数
C.y=在R上为增函数 D.y=f(x)在R上为减函数
【答案】ABC
【解析】
令可判断出A B C不正确,利用单调函数的定义判断可得结果.
【详解】
对于A,若f(x)=x,则y==,在R上不是减函数,A错误;
对于B,若f(x)=x,则y=|f(x)|=|x|,在R上不是增函数,B错误;
对于C,若f(x)=x,则y==,在R上不是增函数,C错误;
对于D,函数f(x)在R上为增函数,则对于任意的x1,x2∈R,设x1<x2,必有f(x1)<f(x2),
对于y=f(x),则有y1-y2=[f(x1)][f(x2)]=f(x2)f(x1)>0,
则y=f(x)在R上为减函数,D正确.
故选:ABC
2.已知fx=1+2x−x2,那么gx=ffx( )
A. 在区间−2,1上单调递增 B. 在0,2上单调递增
C. 在−1,1上单调递增 D. 在1,2上单调递增
【答案】D
【解析】fx=1+2x−x2=−x−12+2,在
记t=fx,则gx= ft
当x∈−2,1时,fx单调递增,且t=fx∈−7,2)
而y= ft在−7,2)不具有单调性,故A错误;
当x∈0,2时,fx不具有单调性,故B错误;
当x∈−1,1时,fx单调递增,且t=fx∈−3,2)
而y= ft在−3,2)不具有单调性,故C错误;
当x∈1,2时,fx单调递减,且t=fx∈1,2)
而y= ft在1,2)单调递减,根据“同增异减”知,D正确.
故选:D
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档