下载此文档

人教专题5.4 三角恒等变换 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx


高中 高一 下学期 数学 人教版

1340阅读234下载16页395 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题5.4 三角恒等变换 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx
文档介绍:
专题5.4 三角恒等变换
新课程考试要求
1.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.
2.掌握简单的三角函数式的化简、求值及恒等式证明.
核心素养
本节涉及所有的数学核心素养:逻辑推理(多例)、直观想象(多例)、数学运算(多例)、数据分析等.
高考预测
(1)和(差)角公式:结合拆角、配角方法,将两角和与差的正弦、余弦、正切公式及二倍角公式等相结合,考查三角函数式的化简求值或求角问题
(2)二倍角公式与同角公式综合考查,重点解决三角函数求值问题;
(3)和差倍半的三角函数公式的综合应用.
(4)对于三角恒等变换,高考命题主要以公式的基本运用(正用、逆用、变用)、计算为主,其中多与角的范围、三角函数的性质、三角形等知识结合考查.
【知识清单】
知识点1.两角和与差的三角函数公式
(1)两角和与差的正弦、余弦、正切公式
C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;
C(α+β):cos(α+β)=cosαcos_β-sin_αsinβ;
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;
S(α-β):sin(α-β)=sin_αcos_β-cosαsinβ;
T(α+β):tan(α+β)=;
T(α-β):tan(α-β)=.
(2)变形公式:
tan α±tan β=tan(α±β)(1∓tanαtanβ);
.
(3)辅助角公式
一般地,函数f(α)=asin α+bcos α(a,b为常数)可以化为f(α)=sin(α+φ)或f(α)=cos(α-φ) .
知识点2.二倍角公式
(1)二倍角的正弦、余弦、正切公式:
S2α:sin 2α=2sin_αcos_α;
C2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
T2α:tan 2α=.
(2)变形公式:
cos2α=,sin2α=
1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2
【考点分类剖析】
考点一 两角和与差的正弦函数、余弦函数公式的应用
【典例1】(2021·全国高三其他模拟)已知点,为坐标原点,线段绕原点逆时针旋转,到达线段,则点的坐标为( )
A. B.
C. D.
【答案】D
【解析】
根据三角函数的定义确定出终边经过点的的三角函数值,然后根据位置关系判断出的终边经过,结合两角和的正、余公式求解出的坐标.
【详解】
由的坐标可知在单位圆上,设的终边经过点,所以,
又因为由绕原点逆时针旋转得到,所以的终边经过点且也在单位圆上,
所以,
又因为,
所以,
故选:D.
【典例2】(2020·山东聊城�高一期末)角的终边与单位圆的交点坐标为,将的终边绕原点顺时针旋转,得到角,则( )
A. B. C. D.
【答案】A
【解析】
由角的终边经过点,得,
因为角的终边是由角的终边顺时针旋转得到的,
所以

故选:.
【典例3】【多选题】(2020·广东高一期末)已知函数f(x)=sin(ωx+)﹣cos(ωx+)(0<ω<6)的图象关于直线x=1对称,则满足条件的ω的值为( )
A. B. C. D.
【答案】BC
【解析】
因为,
由,,
因为,所以,,
由题意可得,,得,,
因为,所以或.
故选:BC.
【规律方法】
1.三角函数求值的两种类型:
(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.
(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.
①一般可以适当变换已知式,求得另外函数式的值,以备应用;
②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.
2.三角公式化简求值的策略
(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.
(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.
(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.
3.给值求角问题,解题的一般步骤是:
(1)先确定角α的范围,且使这个范围尽量小;
(2)根据(1)所得范围来确定求tanα、sinα、cosα中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;
(3)求α的一个三角函数值;(4)写出α的大小.
【变式探究】
1.(2019·北京高考模拟(文))如图,在平面直角坐标系中,角与角均以为始边,终边分别是射线OA和射
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档