下载此文档

人教高中数学专题05 数列放缩(精讲精练)(解析版).docx


高中 高二 下学期 数学 人教版

1340阅读234下载55页3.03 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题05 数列放缩(精讲精练)(解析版).docx
文档介绍:
专题05 数列放缩
【命题规律】
数列放缩是高考重点考查的内容之一,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.此类问题往往从通项公式入手,若需要放缩也是考虑对通项公式进行变形;在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向可裂项相消的数列与等比数列进行靠拢.
【核心考点目录】
核心考点一:先求和后放缩
核心考点二:裂项放缩
核心考点三:等比放缩
核心考点四:型不等式的证明
核心考点五:型不等式的证明
核心考点六:型不等式的证明
核心考点七:型不等式的证明
【真题回归】
1、(2022·全国·高考真题)已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
【解析】(1)当时,,则,
当时,,当时,,
故的减区间为,增区间为.
(2)设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,    
所以在上为减函数,所以.
综上,.
(3)取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,


故不等式成立.
2、(2022·全国·高考真题)记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
【解析】(1)∵,∴,∴,
又∵是公差为的等差数列,
∴,∴,
∴当时,,
∴,
整理得:,
即,


显然对于也成立,
∴的通项公式;
(2)

3、(2021·天津·高考真题)已知是公差为2的等差数列,其前8项和为64.是公比大于0的等比数列,.
(I)求和的通项公式;
(II)记,
(i)证明是等比数列;
(ii)证明
【解析】(I)因为是公差为2的等差数列,其前8项和为64.
所以,所以,
所以;
设等比数列的公比为,
所以,解得(负值舍去),
所以;
(II)(i)由题意,,
所以,
所以,且,
所以数列是等比数列;
(ii)由题意知,,
所以,
所以,
设,
则,
两式相减得,
所以,
所以.
4、(2021·全国·高考真题(文))设是首项为1的等比数列,数列满足.已知,,成等差数列.
(1)求和的通项公式;
(2)记和分别为和的前n项和.证明:.
【解析】(1)因为是首项为1的等比数列且,,成等差数列,
所以,所以,
即,解得,所以,
所以.
(2)[方法一]:作差后利用错位相减法求和



设,    ⑧
则.     ⑨
由⑧-⑨得.
所以.
因此.
故.
[方法二]【最优解】:公式法和错位相减求和法
证明:由(1)可得,
,①
,②
①②得 ,
所以,
所以,
所以.
[方法三]:构造裂项法
由(Ⅰ)知,令,且,即,
通过等式左右两边系数比对易得,所以.
则,下同方法二.
[方法四]:导函数法
设,
由于,
则.
又,
所以
,下同方法二.
【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.
(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;
方法二根据数列的不同特点,分别利用公式法和错位相减法求得,然后证得结论,为最优解;
方法三采用构造数列裂项求和的方法,关键是构造,使,求得的表达式,这是错位相减法的一种替代方法,
方法四利用导数方法求和,也是代替错位相减求和法的一种方法.
【方法技巧与总结】
常见放缩公式:
(1);
(2);
(3);
(4);
(5);
(6);
(7);
(8);
(9);
(10)

(11)

(12);
(13).
(14).
(15)二项式定理
①由于,
于是
②,


(16)糖水不等式
若,则;若,则.
【核心考点】
核心考点一:先求和后放缩
例1.(2022·全国·模拟预测)己知为等比数列的前n项和,若,,成等差数列,且.
(1)求数列的通项公式;
(2)若,且数列的前n项和为,证明:.
【解析
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档