下载此文档

人教专题3.9 函数的实际应用 2022年高考数学一轮复习讲练测(讲)解析版.docx


高中 高二 下学期 数学 人教版

1340阅读234下载15页441 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题3.9 函数的实际应用 2022年高考数学一轮复习讲练测(讲)解析版.docx
文档介绍:
专题3.9 函数的实际应用
新课程考试要求
能将一些简单的实际问题转化为相应的函数问题,并给予解决.
核心素养
培养学生数学抽象(多例)、数学运算(多例)、逻辑推理(例9)、数据分析(例3)、直观想象(例3)等核心数学素养.
考向预测
(1)从实际问题中抽象出函数模型,进而利用函数知识求解;
(2)函数的综合应用.
(3)常与二次函数、指数函数、对数函数、三角函数、数列、基本不等式及导数等知识交汇.
【知识清单】
1.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=(k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0).
2. 指数、对数及幂函数三种增长型函数模型的图象与性质
函数
性质
y=ax
(a>1)
y=logax
(a>1)
y=xn
(n>0)
在(0,+∞)
上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化而各有不同
值的比较
存在一个x0,当x>x0时,有logax<xn<ax
【重点总结】
解答函数应用题的一般步骤:
①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
②建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
③求模:求解数学模型,得出数学结论;
④还原:将数学问题还原为实际问题的意义.
【考点分类剖析】
考点一 :一次函数与分段函数模型
【典例1】(2021·江西南昌市·高三三模(文))某电影票单价30元,相关优惠政策如下:①团购10张票,享受9折优惠:②团购30张票,享受8折优惠;③购票总额每满500元减80元.每张电影票只能享受一种优惠政策,现需要购买48张电影票,合理设计购票方案,费用最少为( )
A.1180元 B.1230元 C.1250元 D.1152元
【答案】A
【解析】
计算第③种方案的优惠折扣,可得先以第②种方案购票张,再以第③种方案购买张可得答案.
【详解】
由第③种方案可知,,,,
,则第③种方案约为84折,所以先以第②种方案购票张:
(元),再以第③种方案购买余下的张:(元),
所以共需要(元).
故选:A.
【典例2】【多选题】(2021·浙江高一期末)某市出租车收费标准如下:起步价为8元,起步里程为(不超过按起步价付费);超过但不超过时,超过部分按每千米2.15元收费;超过时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元,下列结论正确的是( )
A.出租车行驶,乘客需付费8元
B.出租车行驶,乘客需付费9.6元
C.出租车行驶,乘客需付费25.45元
D.某人两次乘出租车均行驶的费用之和超过他乘出租车行驶一次的费用
【答案】CD
【解析】
根据题意,逐一分析各个选项,即可得答案
【详解】
对于A:出租车行驶,乘客需付起步价8元和燃油附加费1元,共9元,故A错误;
对于B:出租车行驶,乘客需付费8+2.15+1=11.15元,故B错误;
对于C:出租车行驶,乘客需付费元,故C正确;
对于D:某人两次乘出租车均行驶的费用之和为元,
一次行驶的费用为25.45元,,故D正确.
故选:CD
【规律方法】
1.确定一次函数模型时,一般是借助两个点来确定,常用待定系数法.
2.分段函数模型的求解策略
(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.
(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏.
(3)分段函数的最值是各段最大值(或最小值)中的最大者(或最小者).
【变式探究】
1.(2020·广东省高三其他(理))某贫困县为了实施精准扶贫计划,使困难群众脱贫致富,对贫困户实行购买饲料优惠政策如下:
(1)若购买饲料不超过2000元,则不给予优惠;
(2)若购买饲料超过2000元但不超过5000元,则按标价给予9折优惠;
(3)若购买饲料超过5000元,其5000元内的给予9折优惠,超过5000元的部分给予7折优惠.
某贫穷户购买一批饲料,有如下两种方案:
方案一:分两次付款购买,分别为2880元和4850元;
方案二:一次性付款购买.
若取用方案二购买此批饲料,则
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档