下载此文档

人教专题04 立体几何——2020年高考真题和模拟题文科数学分项汇编(教师版含解析).docx


高中 高二 下学期 数学 人教版

1340阅读234下载42页2.99 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题04 立体几何——2020年高考真题和模拟题文科数学分项汇编(教师版含解析).docx
文档介绍:
专题04 立体几何
1.【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为
A. B. C. D.
【答案】C
【解析】如图,设,则,
由题意得,即,化简得,
解得(负值舍去).故选C.
【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.
2.【2020年高考全国Ⅱ卷文数】已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为
A. B. C.1 D.
【答案】C
【解析】设球的半径为,则,解得:.
设外接圆半径为,边长为,
是面积为的等边三角形,
,解得:,,
球心到平面的距离.
故选:C.
【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.
3.【2020年高考全国Ⅲ卷文数】如图为某几何体的三视图,则该几何体的表面积是
A.6+4 B.4+4 C.6+2 D.4+2
【答案】C
【解析】根据三视图特征,在正方体中截取出符合题意的立体图形
根据立体图形可得:
根据勾股定理可得:
是边长为的等边三角形
根据三角形面积公式可得:
该几何体的表面积是:.
故选:C.
【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.
4.【2020年高考全国Ⅰ卷文数】已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为
A. B. C. D.
【答案】A
【解析】设圆半径为,球的半径为,依题意,
得,为等边三角形,
由正弦定理可得,
,根据球的截面性质平面,

球的表面积.
故选:A
【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.
5.【2020年高考天津】若棱长为的正方体的顶点都在同一球面上,则该球的表面积为
A. B.
C. D.
【答案】C
【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,
即,
所以,这个球的表面积为.
故选:C.
【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.
6.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为
A. B.
C. D.
【答案】D
【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,
则其表面积为:.
故选:D.
【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.
(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.
(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.
7.【2020年高考浙江】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是
A. B. C.3 D.6
【答案】A
【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,
且三棱锥的一个侧面垂直于底面,且棱锥的高为1,
棱柱的底面为等腰直角三角形,棱柱的高为2,
所以几何体的体积为.
故选:A
【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.
8.【2020年高考浙江】已知空间中不过同一点的三条直线l,m,n.“l ,m,n共面”是“l ,m,n两两相交”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档