下载此文档

人教专题8.5 直线、平面垂直的判定及性质 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx


高中 高二 下学期 数学 人教版

1340阅读234下载31页1.27 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题8.5 直线、平面垂直的判定及性质 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx
文档介绍:
专题8.5 直线、平面垂直的判定及性质
新课程考试要求
1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;
2. 掌握公理、判定定理和性质定理.
核心素养
本节涉及的数学核心素养:数学运算、逻辑推理、直观想象等.
考向预测
(1)以几何体为载体,考查线线、线面、面面垂直证明.
(2)利用垂直关系及垂直的性质进行适当的转化,处理综合问题.
(3)本节是高考的必考内容.预测2020年高考将以直线、平面垂直的判定及其性质为重点,涉及线线垂直、线面垂直及面面垂直的判定及其应用,题型为解答题中的一问,或与平行相结合进行命题的判断.以及运用其进一步研究体积、距离、角的问题,考查转化与化归思想、运算求解能力及空间想象能力.
【知识清单】
知识点1.直线与平面垂直的判定与性质
定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.
定理:
文字语言
图形语言
符号语言
判定定理
如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
⇒l⊥α
性质定理
如果两条直线同垂直于一个平面,那么这两条直线平行.
⇒a∥b
知识点2.平面与平面垂直的判定与性质
定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
定理:
文字语言
图形语言
符号语言
判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
⇒β⊥α
性质定理
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
⇒AB⊥α
知识点3.线面、面面垂直的综合应用
1.直线与平面垂直
(1)判定直线和平面垂直的方法
①定义法.
②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.
③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内任意直线.
②垂直于同一个平面的两条直线平行.
③垂直于同一直线的两平面平行.
2.斜线和平面所成的角
斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.
3.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法
②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.
(2)平面与平面垂直的性质
如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
【考点分类剖析】
考点一 :直线与平面垂直的判定与性质
【典例1】(2021·全国高考真题(文))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,.
(1)求三棱锥的体积;
(2)已知D为棱上的点,证明:.
【答案】(1);(2)证明见解析.
【解析】
(1)首先求得AC的长度,然后利用体积公式可得三棱锥的体积;
(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.
【详解】
(1)如图所示,连结AF,
由题意可得:,
由于AB⊥BB1,BC⊥AB,,故平面,
而平面,故,
从而有,
从而,
则,为等腰直角三角形,
,.
(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,
正方形中,为中点,则,
又,
故平面,而平面,
从而.
【典例2】(2021·河北易县中学高一月考)在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.
(1)求证:PO⊥平面ABC;
(2)求直线PM与平面PBO所成的角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;
(2)根据线面垂直面 ,得出线和面的夹角 ,从而得出线面角的正弦值.
【详解】
(1)由,有,从而有,

又是边长等于的等边三角形,
.
又,从而有.
又平面.
(2)过点作交于点,连.
由(1)知平面,得,又平面
是直线与平面所成的角.
由(1),从而为线段的中点,


所以直线与平面所成的角的正弦值为
【规律方法】
(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.
(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档