下载此文档

人教高中数学专题12 数列的基本运算(讲)【解析版】.docx


高中 高三 下学期 数学 人教版

1340阅读234下载15页754 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题12 数列的基本运算(讲)【解析版】.docx
文档介绍:
第一篇 热点、难点突破篇
专题12 数列的基本运算(讲)
真题体验 感悟高考
1.(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则(    )
A.0.75 B.0.8 C.0.85 D.0.9
【答案】D
【分析】设,则可得关于的方程,求出其解后可得正确的选项.
【详解】设,则,
依题意,有,且,
所以,故,
故选:D
2.(2022·全国·统考高考真题)已知等比数列的前3项和为168,,则(    )
A.14 B.12 C.6 D.3
【答案】D
【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.
【详解】解:设等比数列的公比为,
若,则,与题意矛盾,
所以,
则,解得,
所以.
故选:D.
3.(2022·全国·统考高考真题)记为数列的前n项和.已知.
(1)证明:是等差数列;
(2)若成等比数列,求的最小值.
【答案】(1)证明见解析;
(2).
【分析】(1)依题意可得,根据,作差即可得到,从而得证;
(2)法一:由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.
【详解】(1)因为,即①,
当时,②,
①②得,,
即,
即,所以,且,
所以是以为公差的等差数列.
(2)[方法一]:二次函数的性质
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,所以,
所以,当或时,.
[方法二]:【最优解】邻项变号法
由(1)可得,,,
又,,成等比数列,所以,
即,解得,
所以,即有.
则当或时,.
【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;
法二:根据邻项变号法求最值,计算量小,是该题的最优解.
总结规律 预测考向
(一)规律与预测
1. 等差(等比)数列的定义、通项公式及求和公式是高考的基础考点与高频考点.以小题居多,属于容易题.
2. 数列求和方法中的公式法、错位相减法、裂项相消法及分组求和法是高考的高频考点,以小题或解答题形式出现,难易程度有些起伏,从趋势看,与不等式等相结合,其难度有所增大,总体属于中档题.涉及数列的通项、递推与不等式相结合的客观题有所增加.
(二)本专题考向展示

考点突破 典例分析
考向一 等差数列、等比数列的基本运算
【核心知识】
等差数列、等比数列的基本公式(n∈N*)
(1)等差数列的通项公式:an=a1+(n-1)d;
(2)等比数列的通项公式:an=a1·qn-1.
(3)等差数列的求和公式:;
(4)等比数列的求和公式:
【典例分析】
典例1.(2021·北京·统考高考真题)已知是各项均为整数的递增数列,且,若,则的最大值为(    )
A.9 B.10 C.11 D.12
【答案】C
【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得可能的最大值,然后构造数列满足条件,即得到的最大值.
【详解】若要使n尽可能的大,则,递增幅度要尽可能小,
不妨设数列是首项为3,公差为1的等差数列,其前n项和为,
则,,
所以.
对于,,
取数列各项为(,,
则,
所以n的最大值为11.
故选:C.
典例2.(2020·全国·统考高考真题)记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=(    )
A.2n–1 B.2–21–n C.2–2n–1 D.21–n–1
【答案】B
【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可.
【详解】设等比数列的公比为,
由可得:,
所以,
因此.
故选:B.
典例3.(2022春·湖南长沙·高三长郡中学校考阶段练****已知等差数列满足,前4项和.
(1)求的通项公式;
(2)设等比数列满足,求的前项和.
【答案】(1)
(2)
【分析】(1)由题干条件分别求出公差d和首项,再代入公式即可;
(2)由(1)求得的数列的通项公式计算和,进而得到数列的首项和公比,最后代入等比数列前n项和公式即可.
【详解】(1)设等差数列的通项公式为,
由题可知,,所以.
又,
所以.
故的通项公式为.
(2)由(1)知,,
于是等比数列的公比为,
则等比数列的通项
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档