下载此文档

人教高中数学专题12 圆锥曲线中的“设而不求”(解析版).docx


高中 高三 下学期 数学 人教版

1340阅读234下载28页1.75 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题12 圆锥曲线中的“设而不求”(解析版).docx
文档介绍:
专题12 圆锥曲线中的“设而不求”
一、考情分析
研究曲线方程及由方程研究曲线的有关性质问题,是圆锥曲线中的一个重要内容,其特点是代数的运算较为繁杂,许多学生会想而不善于运算,往往是列出式子后“望式兴叹”.在解决圆锥曲线问题时若能恰当使用“设而不求”的策略,可避免盲目推演造成的无效运算,从而达到准确、快速的解题效果.
二、解题秘籍
(一) “设而不求”的实质及注意事项
1.设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.
2.在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.
3. “设而不求”最常见的类型一是涉及动点问题,设出动点坐标,在运算过程中动点坐标通过四则运算消去,或利用根与系数的关系转化为关于其他参数的问题;二是涉及动直线问题,把斜率或截距作为参数,设出直线的方程,再通过运算消去.
【例1】(2023届山西省临汾市等联考高三上学期期中)已知椭圆的长轴长为,,为的左、右焦点,点在上运动,且的最小值为.连接,并延长分别交椭圆于,两点.
(1)求的方程;
(2)证明:为定值.
【解析】(1)由题意得,
设,的长分别为,,
则,当且仅当时取等号,
从而,得,,
则椭圆的标准方程为;
(2)由(1)得,,
设,,
设直线的方程为,直线的方程为,
由,得,
则,

同理可得,
所以.
所以为定值.
【例2】(2023届江苏省连云港市高三上学期10月联考)已知椭圆中有两顶点为,,一个焦点为.
(1)若直线过点且与椭圆交于,两点,当时,求直线的方程;
(2)若直线过点且与椭圆交于,两点,并与轴交于点,直线与直线交于点,当点异,两点时,试问是否是定值?若是,请求出此定值,若不是,请说明理由.
【解析】(1)∵椭圆的焦点在轴上,设椭圆的标准方程为,
由已知得,,所以,
椭圆的方程为,
当直线与轴垂直时与题意不符,
设直线的方程为,,,
将直线的方程代入椭圆的方程化简得,
则,,
∴,解得.
∴直线的方程为;
(2)当轴时,,不符合题意,
当与轴不垂直时,设:,则,
设,,联立方程组得,
∴,,
又直线:,直线:,
由可得,即,




,即,得,
∴点坐标为,
∴,
所以为定值.
(二)设点的坐标
在涉及直线与圆锥曲线位置关系时,如何避免求交点,简化运算,是处理这类问题的关键,求解时常常设出点的坐标,设坐标方法即通过设一些辅助点的坐标,然后以坐标为参数,利用点的特性(条件)建立关系(方程).显然,这里的坐标只是为寻找关系而作为“搭桥”用的,在具体解题中是通过“设而不求”与“整体消元”解题策略进行的.
【例3】(2023届湖南省郴州市高三上学期质量监测)已知椭圆的离心率为,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接.当为椭圆的右焦点时,的面积为.
(1)求椭圆的方程;
(2)若为的延长线与椭圆的交点,试问:是否为定值,若是,求出这个定值;若不是,说明理由.
【解析】(1)椭圆离心率,,则,
当为椭圆右焦点时,;
,解得:,,
椭圆的方程为:.
(2)由题意可设直线,,,
则,,,直线;
由得:,
,则,
,;
,又,
,则,
为定值.
【例4】(2023届江苏省南通市如皋市高三上学期期中)作斜率为的直线l与椭圆交于两点,且在直线l的左上方.
(1)当直线l与椭圆C有两个公共点时,证明直线l与椭圆C截得的线段AB的中点在一条直线上;
(2)证明:的内切圆的圆心在一条定直线上.
【解析】(1)设,,中点坐标为,
所以有,联立,得,得,得
,由韦达定理可知,,所以,所以,化简得:,所以线段AB的中点在直线上.
(2)由题可知,的斜率分别为,,所以,因为得
由(1)可知,,所以,又因为在直线l的左上方,所以的角平分线与轴平行,所以的内切圆的圆心在这条直线上.
(三)设参数
在求解与动直线有关的定点、定值或最值与范围问题时常设直线方程,因为动直线方程不确定,需要引入参数,这时常引入斜率、截距作为参数.
【例5】(2022届湖南省益阳市高三上学期月考)已知椭圆的左右焦点分别为,,其离心率为,P为椭圆C上一动点,面积的最大值为.
(1)求椭圆C的方程;
(2)过右焦点的直线
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档