下载此文档

人教专题8.3 空间点、直线、平面之间的位置关系 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx


高中 高三 下学期 数学 人教版

1340阅读234下载19页940 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题8.3 空间点、直线、平面之间的位置关系 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx
文档介绍:
专题8.3 空间点、直线、平面之间的位置关系
新课程考试要求
1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;
2.了解两点间距离、点到平面的距离的含义.
3.理解两条异面直线所成角、直线与平面所成角、二面角的概念.
核心素养
本节涉及的数学核心素养:数学运算、逻辑推理、直观想象等.
考向预测
(1)以几何体为载体,考查点线面的位置关系,以及异面直线所成角、线面角等,与平行关系、垂直关系等相结合考查的情况.
(2)判断线线、线面、面面的位置关系.
(3)平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型多为选择题或填空题,少有在大题中间接考查.平面的基本性质是立体几何的基础,而两条异面直线所成的角、线面角、二面角和距离是高考热点.
【知识清单】
知识点1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).
(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.
推论1:经过一条直线和这条直线外一点,有且只有一个平面.
推论2:经过两条相交直线,有且只有一个平面.
推论3:经过两条平行直线,有且只有一个平面.
知识点2.空间两直线的位置关系
直线与直线的位置关系的分类
直线与平面的位置关系有平行、相交、在平面内三种情况.
平面与平面的位置关系有平行、相交两种情况.
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
知识点3.异面直线所成的角
异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫作异面直线a,b所成的角(或夹角).
②范围:.
异面直线的判定方法:
判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;
反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.
知识点4.直线与平面所成角
1.直线和平面所成角的求法:如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=.
知识点5.二面角
1.求二面角的大小
(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图2、3,分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小(或).
【考点分类剖析】
考点一 :平面的基本性质
【典例1】(2021·北京高一期末)已知点A∈直线l,又A∈平面,则( )
A. B. C. D.或
【答案】D
【解析】
根据直线与平面的位置关系判断.
【详解】
点A∈直线l,又A∈平面,则与平面至少有一个公共点,所以或.
故选:D.
【典例2】(2020·全国高考真题(文))如图,在长方体中,点,分别在棱,上,且,.证明:
(1)当时,;
(2)点在平面内.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)因为长方体,所以平面,
因为长方体,所以四边形为正方形
因为平面,因此平面,
因为平面,所以;
(2)在上取点使得,连,
因为,所以
所以四边形为平行四边形,
因为所以四点共面,所以四边形为平行四边形, ,所以四点共面,
因此在平面内
【规律方法】
1.证明点共线问题的常用方法
公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上
同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.
2.证明线共点问题的方法
证明若干线共点的基本思路是先找出两条直线的交点,再证明其他直线都经过该点.而证明直线过该点的方法是证明点是以该直线为交线的两个平面的公共点.
3.证明点、直线共面问题的常用方法
纳入平面法:先确定一个平面,再证明有关点、线在此平面内
辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合
【变式探究】
1.(2019·上海高三)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( )
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.非充分非必要条件
【答案】A
【解析】
由题意,根据直线和直线外的一点
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档