下载此文档

人教高中数学微专题02 三角函数的范围与最值(解析版).docx


高中 高一 下学期 数学 人教版

1340阅读234下载39页2.36 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学微专题02 三角函数的范围与最值(解析版).docx
文档介绍:
微专题02 三角函数的范围与最值
【秒杀总结】
一、三角函数中的大小及取值范围
1、任意两条对称轴之间的距离为半周期的整数倍,即;
2、任意两个对称中心之间的距离为半周期的整数倍,即;
3、任意对称轴与对称中心之间的距离为周期加半周期的整数倍,即;
4、在区间内单调且
5、在区间内不单调内至少有一条对称轴,
6、在区间内没有零点且
7、在区间内有个零点.
二、三角形范围与最值问题
1、坐标法:把动点转为为轨迹方程
2、几何法
3、引入角度,将边转化为角的关系
4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.
【典型例题】
例1.(2023·全国·高三专题练****在中,,的内切圆的面积为,则边长度的最小值为(    )
A.16 B.24 C.25 D.36
【答案】A
【解析】因为的内切圆的面积为,所以的内切圆半径为4.设内角,
,所对的边分别为,,.因为,所以,所以.因为,所以.设内切圆与边切于点,由可求得,则.又因为,所以.所以.又因为,所以,即,整理得.因为,所以,当且仅当时,取得最小值.
故选:A.
例2.(2023·全国·高三专题练****已知函数,其中,为的零点:且恒成立,在区间上有最小值无最大值,则的最大值是(    )
A.11 B.13 C.15 D.17
【答案】C
【解析】由题意,是的一条对称轴,所以,即①
又,所以②
由①②,得,
又在区间上有最小值无最大值,所以
即,解得,要求最大,结合选项,先检验
当时,由①得,即,又
所以,此时,当时,,
当即时,取最小值,无最大值,满足题意.
故选:C
例3.(2023·高一课时练****如图,直角的斜边长为2,,且点分别在
轴,轴正半轴上滑动,点在线段的右上方.设,(),记,,分别考查的所有运算结果,则
A.有最小值,有最大值 B.有最大值,有最小值
C.有最大值,有最大值 D.有最小值,有最小值
【答案】B
【解析】依题意,所以.设,则,所以,,所以,当时,取得最大值为.
,所以,所以,当时,有最小值为.故选B.
例4.(2023·全国·高三专题练****已知函数图象上存在两条互相垂直的切线,且,则的最大值为(    )
A. B. C. D.
【答案】D
【解析】由,令,
由,

,所以
由题意可知,存在,使得,
只需要,即,所以,,
所以的最大值为.
故选: D.
例5.(2023·全国·高三专题练****已知,函数恰有3个零点,则m的取值范围是(    )
A. B. C. D.
【答案】A
【解析】设,,
求导
由反比例函数及对数函数性质知在上单调递增,
且,,故在内必有唯一零点,
当时,,单调递减;
当时,,单调递增;
令,解得或2,可作出函数的图像,
令,即,在之间解得或或,
作出图像如下图
数形结合可得:,
故选:A
例6.(2023·全国·高三专题练****已知函数在上单调递增,且当
时,恒成立,则的取值范围为(    )
A. B. C. D.
【答案】B
【解析】由已知,函数在上单调递增,
所以,解得:,
由于,所以,解得:①
又因为函数在上恒成立,
所以,解得:,
由于,所以,解得:②
又因为,当时,由①②可知:,解得;
当时,由①②可知:,解得.
所以的取值范围为.
故选:B.
例7.(2023·全国·高三专题练****在锐角中,角A,B,C的对边分别为a,b,c,
的面积为S,若,则的取值范围为(    )
A. B. C. D.
【答案】C
【解析】在中,,
故题干条件可化为,由余弦定理得,
故,又由正弦定理化简得:

整理得,故或(舍去),得
为锐角三角形,故,解得,故
故选:C
例8.(2023·上海·高三专题练****在钝角中,分别是的内角所对的边,点是的重心,若,则的取值范围是(    )
A. B. C. D.
【答案】C
【解析】延长交于,如下图所示:
为的重心,为中点且,
,,;
在中,;
在中,;
,,
即,整理可得:,为锐角;
设为钝角,则,,,
,,解得:,
,,
由余弦定理得:,
又为锐角,,即的取值范围为.
故选:C.
例9.(2023·全国·高三专题练****设锐角的内角所对的边分别为,若,则的取值范围为(    )
A.(1,9] B.(3,9]
C.(5,9] D.(7,9]
【答案】D
【解析】因
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档