5.2 估计总体的数字特征
课后篇巩固提升
A组
1.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,则x等于( )
A.5 B.6 C.7 D.8
解析由题意知,10+11+0+3+x+8+9=7×7,解得x=8.
答案D
2.若样本数据a,0,1,2,3的平均数是1,则样本方差为( )
A. B. C. D.2
解析由已知得=1,解得a=-1,于是方差为s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.
答案D
3.若样本的频率分布直方图如图所示,则样本数据的中位数等于( )
A.30
B.40
C.36.5
D.35
解析设中位数为x,则由图可知:
0.006×10+0.018×10+(x-30)×0.04=0.5,
解得x=36.5.
答案C
4.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如右:
根据右图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )
A.甲运动员得分的极差大于乙运动员得分的极差
B.甲运动员得分的中位数大于乙运动员得分的中位数
C.甲运动员得分的平均值大于乙运动员得分的平均值
D.甲运动员的成绩比乙运动员的成绩稳定
解析由茎叶图可得,甲运动员得分的极差为47-18=29,乙运动员得分的极差为33-17=16,即可得A正确;甲运动员得分的中位数为30,乙运动员得分的中位数为26,即B正确;甲运动员得分的平均值为
≈29.23,乙运动员得分的平均值为=25,即C正确;乙运动员的成绩分布较甲运动员的更集中,即D不正确,故应选D.
答案D
5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
解析由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=,C对;甲、乙的成绩的极差均为4,D错.
答案C
6.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.
则:(1)平均命中环数为 ;
(2)命中环数的标准差为 .
解析(1)=7.
(2)∵s2=[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4,∴s=2.
答案(1)7 (2)2
7.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm):
甲:9.00,9.20,9.00,8.50,9.10,9.20;
乙:8.