3.4实际问题与一元一次方程(2)
◆阶段性内容回顾
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.
(2)找出等量关系:找出能够表示本题含义的相等关系.
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.
2.若干应用问题等量关系的规律
(1)和、差、倍、分问题
增长量=原有量×增长率
现在量=原有量+增长量
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式
V=底面积×高=S·h=r2h
②长方体的体积
V=长×宽×高=abc
3.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,
百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
4.市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率=×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
5.行程问题
基本量之间的关系
路程=速度×时间
时间=路程÷速度
速度=路程÷时间
(1)相遇问题
快行距+慢行距=原距
(2)追及问题
快行距-慢行距=原距
(3)航行问题
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
6.工程问题
工作量=工作效率×工作时间
工作效率=工作量÷工作时间
工作时间=工作量÷工作效率
完成某项任务的各工作量的和=总工作量=1
7.储蓄问题
(1)利润=×100%
(2)利息=本金×利率×期数.
◆阶段性巩固训练:列方程解应用题
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试