下载此文档

北师大版八年级数学下册 第一章三角形的证明 易错题之角平分线综合专练(三)(Word版 含答案).doc


初中 八年级 下学期 数学 北师大版

1340阅读234下载15页282 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
北师大版八年级数学下册 第一章三角形的证明 易错题之角平分线综合专练(三)(Word版 含答案).doc
文档介绍:
八年级数学下册第一章《三角形的证明》
易错题之角平分线综合专练(三)
1.如图,BD是∠ABC的平分线,AD=CD.求证:∠DAB+∠BCD=180°.
2.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的关系,并说明理由.
3.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.
求证:OC是∠AOB的平分线.
4.在△ABC中,AE、BF是角平分线,交于O点.
(1)如图1,AD是高,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度数.
(2)如图2,若OE=OF,AC≠BC,求∠C的度数.
(3)如图3,若∠C=90°,BC=8,AC=6,AB=10,求S△AOB.
5.如图,在△ABC中,AD平分∠BAC,则=吗?请说明理由.
6.如图①,在平面直角坐标系中,点A的坐标为(0,4),OC=4OB.
(1)若△ABC的面积为10,分别求点B、C的坐标;
(2)如图①,向x轴正方向移动点B,使∠ABC﹣∠ACB=90°,作∠BAC的平分线AD交x轴于点D,求∠ADO的度数;
(3)如图②,在(2)的条件下,线段AD上有一动点Q,作∠AQM=∠DQP,它们的边分别交x、y轴于点M、P,作∠FMG=∠DMQ,试判断FM与PQ的位置关系,并说明理由.
7.如图,在Rt△ABC中,∠ACB=90°,D是BC上一点,DF∥AB交AC于点F,BD=DF=AF,DE⊥AB于点E.
求证:(1)AD平分∠BAC;
(2)CF=BE.
8.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.
9.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.
10.如图所示,OC平分∠AOB,OA=OB,P为OC上一点,PE⊥AC,PF⊥BC,垂足分别为E,F.求证:PE=PF.
11.(1)如图1,在△ABC中,AD平分∠BAC交BC于D,DE⊥AB于E,DF⊥AC于F,则有相等关系DE=DF,AE=AF.
(2)如图2,在(1)的情况下,如果∠MDN=∠EDF,∠MDN的两边分别与AB、AC相交于M、N两点,其它条件不变,那么又有相等关系AM+   =2AF,请加以证明.
(3)如图3,在Rt△ABC中,∠C=90°,∠BAC=60°,AC=6,AD平分∠BAC交BC于D,∠MDN=120°,ND∥AB,求四边形AMDN的周长.
12.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=
CF.求证:AD是△ABC的角平分线.
13.如图直线EF∥GH,点A、点B分别在EF、GH上,连接AB,∠FAB的角平分线AD交GH于D,过点D作DC⊥AB交AB延长线于点C,若∠CAD=36°,求∠BDC的度数.
14.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.
(1)如图①,当点D是BC边上的中点时,S△ABD:S△ACD=   ;
(2)如图②,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);
(3)如图③,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,求S△ABC的值.
15.已知:如图,AD是∠BAC的平分线,∠B=∠EAC,ED⊥AD于D.求证:DE平分∠AEB.
16.如图,△ABC中,P是角平分线AD,BE的交点.求证:点P在∠C的平分线上.
参考答案
1.证明:作DE⊥BA于E,DF⊥BC于F,
∵BD是∠ABC的平分线,DE⊥BA,DF⊥BC,
∴DE=DF,
在Rt△ADE和Rt△CDF中,

∴Rt△ADE≌Rt△CDF,
∴∠DAE=∠DCB,
∵∠DAB+∠DAE=180°,
∴∠DAB+∠BCD=180°.
2.解:
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档