测试10 梯形(一)
学****要求
1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念.
2.掌握等腰梯形的性质和判定.
3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化.
课堂学****检测
一、填空题
1.梯形有关概念:一组对边平行而另一组对边______的四边形叫做梯形,梯形中平行的两边叫做底,按______分别叫做上底、下底(与位置无关),梯形中不平行的两边叫做______,两底间的______叫做梯形的高.一腰垂直于底边的梯形叫做______;两腰______的梯形叫做等腰梯形.
2.等腰梯形的性质:等腰梯形中______的两个角相等,两腰______,两对角线______,等腰梯形是轴对称图形,只有一条对称轴,______就是它的对称轴.
3.等腰梯形的判定:______的梯形是等腰梯形;同一底上的两个角______的梯形是等腰梯形.
4.如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于______度.
5.等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60°,则下底长是______.
6.如图,梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为______.
二、选择题
7.课外活动时,王老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm2,则两条对角线所用的竹条至少需( ).
(A) (B)30cm (C)60cm (D)
8.如图,梯形ABCD中,AD∥BC,∠B=30°,∠BCD=60°,AD=2,AC平分∠BCD,则
BC长为( ).
(A)4 (B)6 (C) (D)
8题图 9题图
9.如图,□ABCD是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是( ).
(A)1∶2 (B)2∶3 (C)3∶5 (D)4∶7
综合、运用、诊断
一、解答题
10.已知:如图,梯形ABCD中,AD∥BC,AB=CD,延长CB到E,使EB=AD,连结AE.求证:AE=CA.
11.如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E
(1)求证:梯形ABCD是等腰梯形;(2)若∠BDC=30°,AD=5,求CD的长.
12.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,AE=1,求梯形
ABCD的高.
拓展、探究、思考
一、解答题
13.如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD,BC的中点,E,F分别是BM,CM的中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.
14.如图,在Rt