抛物线与面积问题
抛物线与面积相结合的题目是近年来中考数学中常见的问题。解答此类问题时,要充分利用抛物线和面积的有关知识,重点把握相交坐标点的位置及坐标点之间的距离,得出相应的线段长或高,从而求解。
例1. 如图1,二次函数的图像与x轴交于A、B两点,其中A点坐标为(-1,0)。点C(0,5)、点D(1,8)在抛物线上,M为抛物线的顶点。
图1
(1)求抛物线的解析式;
(2)求△MCB的面积。
解:(1)设抛物线的解析式为
,根据题意得
,解得
∴所求的抛物线的解析式为
(2)∵C点坐标为(0,5),∴OC=5
令,则,
解得
∴B点坐标为(5,0),OB=5
∵,
∴顶点M的坐标为(2,9)
过点M作MN⊥AB于点N,
则ON=2,MN=9
∴
例2. 如图2,面积为18的等腰直角三角形OAB的一条直角边OA在x轴上,二次函数的图像过原点、A点和斜边OB的中点M。
图2
(1)求出这个二次函数的解析式和对称轴。
(2)在坐标轴上是否存一点P,使△PMA中PA=PM,如果存在,写出P点的坐标,如果不存在,说明理由。
解:(1)∵等腰直角△OAB的面积为18,
∴OA=OB=6
∵M是斜边OB的中点,
∴
∴点A的坐标为(6,0)
点M的坐标为(3,3)
∵抛物线
∴,解得
∴解析式为,
对称轴为
(2)答:在x轴、y轴上都存在点P,使△PAM中PA=PM。
①P点在x轴上,且满足PA=PM时,点P坐标为(3,0)。
②P点在y轴上,且满足PA=PM时,点P坐标为(0,-3)。
例3. 二次函数的图像一部分如图3,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)。
图3
(1)请判断实数a的取值范围,并说明理由。
(2)设此二次函数的图像与x轴的另一个交点为c,当△AMC的面积为△ABC面积的倍时,求a的值。
解:(1)由图象可知:;图象过点(0,1),所以c=1;图象过点(1,0),则;
当时,应有,则
当代入
得,即
所以,实数a的取值范