下载此文档

人教版九年级抛物线存在问题评析.zip


初中 九年级 下学期 数学 人教版

1340阅读234下载12页410 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
抛物线与存在问题评析(08-09)
抛物线是初中数学内蕴最丰富的内容,存在性问题是中考中年年推新的热点,把抛物线与存在性问题结合起来,是考察数学素养、学****能力、心理发展状态的有力的杠杆,因此,不论从考试研究,还是从教学实践的角度,这类素材都弥族珍贵,值得向广大优秀教师推荐。
第一类:图形存在问题
(第25题图)
A
x
y
B
C
O
1-1(08,广东茂名)如图,在平面直角坐标系中,抛物线=-++经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
(1)解法一:
∵抛物线=-++经过点A(0,-4),
∴=-4 ……1分
又由题意可知,、是方程-++=0的两个根,
∴+=, =-=6 2分
由已知得(-)=25
又(-)=(+)-4=-24
∴ -24=25
解得=± 3分
当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去.
∴=-. 4分
解法二:∵、是方程-++c=0的两个根,
即方程2-3+12=0的两个根.
∴=, 2分
∴-==5,
解得 =± 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵=---4=-(+)+ 6分
∴抛物线的顶点(-,)即为所求的点D. 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线=-3与
抛物线=---4的交点, 8分
∴当=-3时,=-×(-3)-×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. 9分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上. 10分
y
x
O
第26题图
D
E
C
F
A
B
1-2(08,辽宁沈阳)如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点.
(1)判断点是否在轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.
解:(1)点在轴上 1分
理由如下:
连接,如图所示,在中,,,

由题意可知:
点在轴上,点在轴上. 3分
(2)过点作轴于点

在中,,
点在第一象限,
点的坐标为 5分
由(1)知,点在轴的正半轴上
点的坐标为
点的坐标为 6分
抛物线经过点,
由题意,将,代入中得
解得
所求抛物线表达式为: 9分
(3)存在符合条件的点,点. 10分
理由如下:矩形的面积
以为顶点的平行四边形面积为.
由题意可知为此平行四边形一边,

边上的高为2 11分
依题意设点的坐标为
点在抛物线上
解得,,

以为顶点的四边形是平行四边形,
y
x
O
D
E
C
F
A
B
M
,,
当点的坐标为时,
点的坐标分别为,;
当点的坐标为时,
点的坐标分别为,. 14分
1-3(08,湖南湘潭)已知抛物线经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线与抛物线相交于点C(2,m),请求出OBC的面积S的值.
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC
于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得OCD与CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.
x
y
-4
-6
C
E
P
D
B
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档