1.2 展开与折叠
一、选择题
1.下图中是六棱柱展开图的是( )
2.一个扇形要围成以某圆为底的圆锥体,则扇形的弧长和某圆的周长( )
A.相等 B.扇形的弧长大于某圆的周长
C.扇形的弧长小于某圆的周长 D.以上都不对
3.如图是一个三边相等的三角形,三边的中点用虚线连接,如果将三角形沿虚线向上折叠,得到的立体图形是( )
A.三棱柱 B.三棱锥
C.正方体 D.圆锥
4.三棱柱中棱的条数是( )
A.三条 B.六条 C.八条 D.九条
5.八棱柱有( )面.
A.2个 B.8个 C.10个 D.12个
6.如图,不可以折成一个棱柱的是( )
7.如图,把左边的图形折叠起来,它会变成右边的正方体( )。
8.将下图中左边的图形折叠起来围成一个正方体,应该得到右图中的( )。
二、填空题
1.七棱柱有____个顶点,有____条棱,有______个侧面.
2.圆锥体的底面是_________形,圆锥体的侧面的平面展开图是_______形.
3.在图中是正方体展开图的有_________.
4. 请自己动手用硬纸板剪一个三边都相等的三角形,再用这个三角形围成一个几何体。围成的几何体有_____个面,所有的面都是______形,有______个顶点,_______条棱.其中棱长是原三角形边长的_______.
5.一个圆形薄铁,刚好做成两个无底圆锥形容器,则这个圆形薄铁的周长恰好是无底圆锥底面周长的________.
6.如图,圆中阴影部分可以是________体侧面的展开平面图.
三、判断题
1.如图中,①是②的表面展开图.( )
2.长方体的表面展开图只有一种.( )
3.由于圆锥体可以由直角三角形旋转得到,所以圆锥体的侧面展开图也可以是三角形.( )
4.圆锥体的侧面展开图只有一种.( )
四、解答题
1.底面是三角形,四边形的棱柱各有多少条棱?
2.想一想,再折一折,下面两图经过折叠能否围成棱柱?
3.将图